期刊文献+

加入10%Si对阴极电弧蒸镀TiAlSiN涂层的影响(英文) 被引量:6

Effect of 10% Si addition on cathodic arc evaporated TiAlSiN coatings
下载PDF
导出
摘要 研究加入10%Si(摩尔分数)对Ti Al Si N涂层的影响。采用阴极电弧蒸镀在WC-Co基体上沉积Ti_(0.5)Al_(0.5)N、Ti_(0.5)Al_(0.4)Si_(0.1)N和Ti_(0.55)Al_(0.35)Si_(0.1)N涂层,通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、纳米压痕测量和划痕试验研究涂层的显微组织和力学性能,探讨Si对涂层的性能和结合失效模式的影响机理。结果表明:加入10%Si后,涂层中形成非晶Si_3N_4包覆(Ti,Al,Si)N纳米晶的纳米复合结构。TiAlSiN涂层的硬度和韧性升高,但结合强度下降。与Ti_(0.55)Al_(0.35)Si_(0.1)N涂层相比,Ti_(0.5)Al_(0.4)Si_(0.1)N涂层的硬度较高但韧性较低。TiAlN涂层由于韧性低、界面结合强,因此结合失效模式以楔形剥落为主。Ti AlS iN涂层由于韧性改善、但界面结合变差,因此结合失效模式以屈曲剥落为主。 The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The microstructure and mechanical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nano-indentation measurement and scratch test. The mechanisms of how Si affects the properties and failure modes of TiAlSiN coatings were also discussed. The results show that the addition of 10% Si results in the formation of nc-(Ti,Al,Si)N/a-Si3N4 nano-composite structure. The hardness and toughness of TiAlSiN coatings increase, whereas the coating adhesion strength decreases. Compared with Ti0.55Al0.35Si0.1N coating, Ti0.5Al0.4Si0.1N coating has higher hardness but lower toughness. The dominant failure mode of TiAlN coating is wedging spallation due to low toughness and strong interfacial adhesion. The dominant failure mode of TiAlSiN coatings is buckling spallation due to improved toughness and weakened interfacial adhesion.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1638-1646,共9页 中国有色金属学报(英文版)
基金 Kennametal Inc. for providing research funding
关键词 TiAlSiN涂层 TIALN涂层 阴极电弧蒸镀 结合强度 TiAlSiN coating TiAlN coating cathodic arc evaporation adhesion strength
  • 相关文献

参考文献34

  • 1VENNEMANN A, STOCK H R, KOHLSCHEEN J, RAMBADT S, ERKENS G. Oxidation resistance of titanium-aluminium-silicon nitride coatings [J]. Surface and Coatings Technology, 2003, 174-175: 408-415.
  • 2CARVALHO S, RIBEIRO E, REBOUTA L, TAVARES C, MENDONCA J P, CAETANO MONTEIRO A, CARVALHO N J M, de HOSSON J T M, CAVALEIRO A. Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering [J]. Surface and Coatings Technology, 2004, 177-178(1): 459-468.
  • 3DERFLINGER V H, SCHüTZE A, ANTE M. Mechanical and structural properties of various alloyed TiAlN-based hard coatings [J]. Surface and Coatings Technology, 2006, 200(16-17): 4693-4700.
  • 4FLINK A, ANDERSSON J M, ALLING B, DANIEL R, SJ-LéN J, KARLSSON L, HULTMAN L. Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films [J]. Thin Solid Films, 2008, 517(2): 714-721.
  • 5CARVALHO S, REBOUTA L, RIBEIRO E, VAZ F, TAVARES C J, ALVES E, BARRADAS N P, RIVIERE J P. Structural evolution of Ti-Al-Si-N nanocomposite coatings [J]. Vacuum, 2009, 83(10): 1206-1212.
  • 6PFEILER M, ZECHNER J, PENOY M, MICHOTTE C, MITTERER C, KATHREIN M. Improved oxidation resistance of TiAlN coatings by doping with Si or B [J]. Surface and Coatings Technology, 2009, 203(20-21): 3104-3110.
  • 7YU Dong-hai, WANG Cheng-yong, CHENG Xiao-ling, ZHANG Feng-lin. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology [J]. Thin Solid Films, 2009, 517(17): 4950-4955.
  • 8CHEN L, WANG S Q, DU Y, ZHOU S Z, GANG T, FEN J C, CHANG K K, LI Y W, XIONG X. Machining performance of Ti-Al-Si-N coated inserts [J]. Surface and Coatings Technology, 2010, 205(2): 582-586.
  • 9BARSHILIA H C, GHOSH M, RAMAKRISHNA S R, RAJAM K S. Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering [J]. Applied Surface Science, 2010, 256(21): 6420-6426.
  • 10VEP-EK S, REIPRICH S, SHIZHI L. Superhard nanocrystalline composite materials: The TiN/Si3N4 system [J]. Applied Physics Letters, 1995, 66(20): 2640-2645.

二级参考文献28

  • 1Tam P L, Zhou Z F, Shum PW, Li K Y. Thin Solid Films, 2008; 516: 5725.
  • 2Shi J, Kumar A, Zhang L, Jiang X, Pei Z L, Gong J, Sun C. Surf Coat Technol, 2012; 206: 2947.
  • 3Franz R, Neidhardt J, Kaindl R, Sartory B, Tessadri R, Lechthaler M, Polcik P, Mitterer C. Surf Coat Technol, 2009; 203: 1101.
  • 4Pfeiler M, Kutschej K, Penoy M, Michotte C, Mitterer C, Kathrein M. Int J Refract Met Hard Mater, 2009; 27: 502.
  • 5Vaz F, Rebouta L, Goudeau P, Girardeau T, Pacaud J, Riviere J P, Traverse A. Surf Coat Technol, 2001; 146: 274.
  • 6Xie Z W, Wang L P, Wang X F, Huang L, Lu Y, Yan J C. Trans Nonferrous Met Soc China, 2011; 21: 476.
  • 7Santana A E, Karimi A, Derflinger V H, Schutze A. Surf Coat Technol, 2004; 177-178: 334.
  • 8Zhu Y C, Fujita K, Iwamoto N, Nagasaka H, Kataoka T. Surf Coat Technol, 2002; 158-159: 664.
  • 9Moser M, Mayrhofer P H. Scr Mater, 2007; 57: 357.
  • 10MoserM,Mayrhofer P H, Clemens H. Intermetallics, 2008; 16: 1206.

共引文献21

同被引文献51

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部