期刊文献+

GNSS广播电离层模型在极区的改正效果分析 被引量:4

ANALYSIS OF GLOBAL NAVIGATION SATELLITE SYSTEM BROADCAST IONOSPHERIC MODEL CORRECTION IN POLAR REGIONS
下载PDF
导出
摘要 电离层时延为GPS测量中最棘手、最严重的误差源,而极区结构复杂波动较大,电离层延迟极大影响了GPS测量精度,故在极区选取一个简单有效的电离层模型极为重要。将GPS及BDS采用的不同Klobuchar模型以及Ne Quick模型计算的极区总电子含量,以欧洲定轨中心提供的GIM模型电离层产品作为参考标准,研究三种广播电离层模型在北极地区的均方根和模型改正率。选取了2009—2013年共计5年的时间数据进行分析。结果表明,纬度在57.5°以上地区电离层改正GPS系统采用的Klobuchar模型基本不适用,但改正效果依然优于BDS,而Ne Quick模型改正效果弱于中低纬度,改正率整体在40%左右。 Time delay in the ionosphere is a major source of error in the Global Navigation Satellite System (GNSS). In particular, the ionosphere in polar regions is quite changeable, resulting in low precision of GNSS positioning. Therefore, an appropriate broadcast ionospheric model is needed for the polar regions. In this paper, vertical total electron content data, derived from the GIM model, are regarded as the true value, and the effects of three correction models (the GPS-Klobuchar model, the BDS-Klobuchar model and the NeQuick model) on the ionospheric delay of positioning accuracy were compared and analyzed. In the polar regions north of 57.5°N and south of 57.5°S, the GPS-Klobuchar model performed less well and even had a negative effect in some cases. The BDS-Klobuchar model is totally unusable in the polar regions. The NeQuick model is better than Klobuchar model, but performed worse at high latitudes than at middle and low latitudes, with a correction rate of about 40%.
出处 《极地研究》 CAS CSCD 2016年第2期235-242,共8页 Chinese Journal of Polar Research
基金 国家自然科学基金(41174029 41204028 41231064) 国家海洋局"南北极环境综合考察与评估"专项(CHINARE2015-02-02) 中央高校基本科研业务费专项(2042015gf0001)资助
关键词 KLOBUCHAR模型 NeQuick模型 GIM模型 总电子含量 极区 Klobuchar model, NeQuick model, GIM model, TEC, polar
  • 相关文献

参考文献4

二级参考文献51

  • 1YUANYunbin OUJikun.A generalized trigonometric series function model for determining ionospheric delay[J].Progress in Natural Science:Materials International,2004,14(11):1010-1014. 被引量:20
  • 2Leteinger R,Hartmann G K,Lohmar F J,et al.Electron content measurements with geodetic Doppler receivers[J].Radio Science,1984,19(3):789-797.
  • 3Titheridge J E.Determination of ionospheric electron content from the Faraday rotation of geostationary satellite signals[J].Planet.Space Sci,1972,20(3).
  • 4Coco D.GPS-satellites of opportunity for ionospheric monitoring[J].GPS world,1991,10:47-50.
  • 5Jakowski N.TEC monitoring by using satellite positioning systems.In Modern Ionospheric Science[J].EGS KatlenburgLindau,FRG 1996:371-390.
  • 6SardFon E,Rius A,Zarraoa N.Estimation of the transmitter and receiver di7erential biases on the ionospheric total electron content from global positioning system observations[J].Radio Science,1994,29:577-586.
  • 7Mannucci A J,Wilson B D,Yuan D N,et al.A global mapping technique for GPS-derived ionospheric total electron content measurements[J].Radio Science,1998,33:565-582.
  • 8Mannucci A J,Iijima B A,Sparks L,et al.Assessment of global TEC mapping using a three-dimensional electron density model[J].J.Atmos.Sol.Terr.Phys.,1999,61:1227-1236.
  • 9Orús R,Hernández-Pajares M,Juan J M,et al.Improvement of global ionospheric VTEC maps by using kriging interpolation technique[J].J.Atmos.Sol.Terr.Phys.,2005,67:1598-1609.
  • 10Hernández-Pajares M,Juan J M,Sanz J.New approaches in global ionospheric determination using ground GPS data[J].J.Atmos and Sol.Terr.Phys.,1999,61:1237-1247.

共引文献84

同被引文献22

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部