摘要
海冰与海水的交界地带是海-冰-气相互作用的重要区域,其变化会影响海洋生物栖息地的联通状态和海洋、大气的交换,确定海冰边界对于分析海冰动态变化具有重要意义[1-2]。被动微波传感器为长期监测海冰变化提供了大尺度的连续观测数据。从经典统计、随机集理论出发,应用三种由被动微波日均海冰密集度数据提取月均海冰边界的方法,分析三种月均边界的差异,以及不同月均边界提取方法对海冰长期变化分析的影响。
The boundary zone between sea ice and open water is an area where ocean, ice and atmosphere meet and interact. To analyze sea ice changes over long time series, it is important to identify the sea ice boundary and to obtain data on parameters such as sea ice extent, area and ice perimeter. Passive microwave imaging is the preferred method to obtain data for long-term monitoring of sea ice changes. Based on classical statistics and random set theory, three different average methods are proposed to extract monthly sea ice extent from daily passive microwave sea ice concentration data. The impact of the differences in these models for long-term analysis of sea ice changes is discussed.
出处
《极地研究》
CAS
CSCD
2016年第2期287-294,共8页
Chinese Journal of Polar Research
基金
国家自然科学基金青年基金(41301463)
高等学校博士学科点专项科研新教师类基金(20130141120009)
国家海洋局海洋-大气化学与全球变化重点实验室开放基金(GCMAC1305)
国家海洋局"南北极环境综合考察与评估"专项(CHINARE2015-04-07)资助