期刊文献+

基于模糊SOM神经网络的汽轮机通流部分故障诊断研究 被引量:5

Study on Fault Diagnosis of Steam Turbine Flow Passage based on Fuzzy SOM Neural Network
下载PDF
导出
摘要 汽轮机实际运行时通流部分经常出现故障,对其进行监测与诊断很有必要。以某600MW机组为对象,提出一种基于模糊理论与SOM神经网络相结合的故障诊断方法。该方法通过对故障样本进行训练,建立故障诊断模型,根据输出神经元在输出层上的位置对故障进行诊断,分析其所属故障模式。研究结果表明:基于SOM神经网络的汽轮机通流部分故障诊断方法是准确和可靠的。该方法克服了故障样本选取的困难,通过聚类功能,对故障模式分类实现了具体数字化和图形可视化,诊断结果简单和直观。 It is necessary to monitor and diagnose the faults of steam turbine flow passage that frequently occur during the operating time. The fault diagnosis method for 600MW unit based on fuzzy theory and SOM neural network was proposed. In the method, the fault samples are trained to establish a fault diagnosis model which diagnoses the failures based on the position of output neurons in the output layer and the mode of fault is analyzed. The result shows that fault diagnosis method of steam turbine flow passage based on SOM neural network is accurate and reliable. The difficulty of the selection of fault samples is overcome, and specific digitization and graphic visualization for fault mode classification are achieved by clustering function, that make the diagnosis result simple and intuitive.
作者 周磊 李勇
出处 《汽轮机技术》 北大核心 2016年第3期215-218,178,共5页 Turbine Technology
关键词 汽轮机 通流部分 典型故障 模糊理论 SOM神经网络 故障诊断 steam turbine flow passage typical fault fuzzy theory SOM neural network fault diagnosis
  • 相关文献

参考文献14

  • 1吴茜,史进渊.大功率汽轮机通流部分故障诊断特征规律的研究[J].动力工程,2001,21(1):1010-1013. 被引量:11
  • 2卫振华,忻建华,曹华,金兴.基于隶属度和规则的层次分类诊断模型[J].动力工程,2005,25(2):258-261. 被引量:7
  • 3YU Yun luo, LI Wei, SHENG Deren, et al. A Novel Sensor Fault Diagnosis Method Based on Modified Ensemble Empirical Mode Decomposition and Probabilistic Neural Network [ J ]. Measure- ment,2015,68(2) :328-336.
  • 4CHEN Xiao yue,ZHOU Jian zhong,XIAO Jian,et al. Fault Diag- nosis Based on Dependent Feature Vector and Probability Neural Network for Rolling Element Bearings [ J ]. Applied Mathematics and Computation, 2014,247 ( 4 ) :835 - 847.
  • 5SHAO Meng, ZHU Xin jian, CAO Hongfei, et al. An Artificial Neural Network Ensemble Method for Fault Diagnosis of Proton Ex- change Membrane Fuel Cell System [ J ]. Energy,2014,67 ( 2 ) : 268 - 275.
  • 6DU Zhi rain,FAN Bo,JIN Xin qiao,et al. Fault Detection and Di- agnosis for Buidings and HVAC Systems Using Combined Neural Networks and Subtractive Clustering Analysis [ J ]. Building and Environment,2014,73 ( 1 ) : 1 - 11.
  • 7XIONG Guo jiang, SHI Dong yuan, CHEN Jin fu, et al. Divisional Fault Diagnosis of Large - scale Power Systems Based on Radial Basis Function Neural Network and Fuzzy Integral [ J ]. Electric Power Systems Research ,2013,105 ( 1 ) :9 - 19.
  • 8印洪浩,彭中波.船用离心泵故障SOM网络诊断方法[J].中国航海,2012,35(2):24-28. 被引量:10
  • 9韩立群.人工神经网络的理论、设计及应用[M].北京:化工工业出版社,2002:78-79.
  • 10董晓峰,顾煜炯,杨昆,朝格图胡日都.汽轮机通流部分故障诊断方法研究[J].中国电机工程学报,2010,30(35):71-77. 被引量:27

二级参考文献55

共引文献79

同被引文献57

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部