期刊文献+

一种基于混合核函数SVM的人脸识别方法 被引量:1

A Face Recognition Method Based on Combined-kernel Function SVM
下载PDF
导出
摘要 SVM是人脸识别中最常使用的一种机器学习领域算法,它通过距离概念得到对数据分布的结构化描述,降低了对数据规模的要求,适合处理人脸图像这种小样本训练集的分类问题。其中SVM的核函数的选择对分类精度影响很大,全局核函数的预测函数对输出进行正确预测的能力较高,而局部核函数具有较强的学习能力,兼顾两者特点,使用结合RBF核和Sigmoid核的混合核来设计SVM分类器进行识别。针对ORL库进行PCA特征提取,然后使用基于混合核的SVM分类器进行识别分类。实验结果表明,在识别率上,基于该混合核函数的SVM分类器比基于普通核函数SVM分类器要更占优势。 Support vector machine( SVM) is one of the most commonly used algorithm in machine learning when it comes to face recognition,it gets structured description of data distribution by the conception of distance and reducing the requirements of data volume,so it's very suitable for the face recognition of small sample of the training set. The selection of kernel function of SVM has a great influence on the classification accuracy,global kernel function has the strong ability of generalization but weak in learning,local kernel function is the opposite,taking into account of both advantages,SVM classifier is designed by using the mixture of RBF core and Sigmoid core for identification. using PCA algorithm to extract feature ORL face database firstly,and then using combined-kernel function of SVM classifer to do classification. The result proved that combined-kernel function of SVM has higher recognition rate than traditional single kernel function.
出处 《四川理工学院学报(自然科学版)》 CAS 2016年第3期23-26,38,共5页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 安徽省自然科学基金项目(1508085MF121) 安徽工程大学安徽检测技术与节能装置省级实验室开放研究基金项目(1506C085002) 2016年高校优秀中青年骨干人才国内外访学研修重点项目(gxfx ZD2016100) 国家级大学生创新训练项目(2014103630342016) 2016年度安徽高校自然科学研究项目(KJ2016 A056)
关键词 混合核函数 支持向量机 PCA 人脸识别 combined-kernel function support vector meachine PCA face recognition
  • 相关文献

参考文献16

  • 1RUJIRAKUL K, SO-IN C, ARNONKIJPANICH B. PEM-PCA: a parallel expectation-maximization PCA face recognition architecture [ J ]. Scientific World Journal,2014 (5): 174-175.
  • 2杨军,刘妍丽.基于图像的单样本人脸识别研究进展[J].西华大学学报(自然科学版),2014,33(4):1-5. 被引量:7
  • 3ADINI Y,MOSES Y,ULLMAN S.Face recognition:the problem of compensating for changes in illumination direetion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):721-732.
  • 4SHARMA R,PATIERH M S.A new hybrid approach using PCA for pose invariant face recognition [J]. Wireless Personal Communications, 2015, 85 (3): 1561-1571.
  • 5SHIEH M Y, CHIOU J S, HU Y C. Applications of PCA and SVM-PSO based Real-Time face recognition system [J ]. Mathematical Problems in Engineering, 2014(1):1-12.
  • 6XU Shibiao,MA Guanghui,MENG Weiliang, et al.Sta- tistical learning based facial animation[J].Frontiers of Information Technology & Electronic Engineering, 2013,14(7):542-550.
  • 7JIANG Yunliang,SHEN Yefeng,LIU Yong,et al.Multi- class Adaboost ELM and its application in LBP based face recognition [J ]. Mathematical Problems in Engi- neering,2015 (1):1-9.
  • 8AGARWAL M,JAIN N,KUMAR M,et al.Face recog- nition using eigen faces and Artificial Neural Network [J].International Journal of Computer Theory and En- gine ering,2010,6 (4) :624 -629.
  • 9SHARMA R, PATIERH M S. A new pose invariant face recognition system using PCA and ANFIS [J]. Optik International Journal for Light and Electron Optics 2 015,126 (23):3483 -3487.
  • 10ZHOU Changjun, WANG Lan, ZHANG Qiang. Face recognition based on PCA and logistic regression analysis[J].Optik International Journal for Light and Electron Optics,2014,125 (20) :5916-5919.

二级参考文献46

  • 1张芬,陶亮,孙艳.基于混合核函数的SVM及其应用[J].计算机技术与发展,2006,16(2):176-178. 被引量:23
  • 2张冰,孔锐.一种支持向量机的组合核函数[J].计算机应用,2007,27(1):44-46. 被引量:22
  • 3孙翠娟.基于K型核函数的支持向量机[J].淮海工学院学报(自然科学版),2006,15(4):4-7. 被引量:17
  • 4VAPNIK V N. The nature of statistical learning theory [ M]. Cambilge: Springer-Verlag, 1995.
  • 5BURGES C. A tutorial on support vector machines for pattern recognition [ J]. Data Mining and Knowledge Discovery, 1998, 2(2) : 121 - 167.
  • 6VAPNIK V. Statistical learning theory [ M]. New York: John Wiley & Sons, 1998.
  • 7POGGIO T. On optimal nonlinear associative recall [ J]. Biological Cybernetics, 1975, 19(19) : 201 -209.
  • 8CORTES C, VAPNIK V. Support vector networks [ J]. Machine Learning, 1995, 20(4) : 273 -297.
  • 9CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods [ M]. New York: Cambridge University Press, 2000.
  • 10Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1995.

共引文献54

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部