期刊文献+

具有免疫应答的HIV感染模型的稳定性

Stability of a HIV Infection Model with Immune Response
下载PDF
导出
摘要 建立具有Holling Ⅱ感染率且考虑免疫应答的HIV模型,讨论系统解的非负性和有界性,得到确定模型动力学性态的基本再生数,最后通过分析模型在平衡点处相应的特征方程,利用微分方程基本理论,证明模型在正平衡点处是局部渐近稳定的。即人类免疫缺陷病毒HIV将在个体体内持续存在,并且免疫应答会持续起作用,并用数值模拟验证结果。 A HIV model with Holling Ⅱinfection rate and immune response is built. Then the nonnegativity and boundedness of the solution are discussed,and the basic reproduction number which determines the dynamical behaviors of the infection model is obtained. Finally,by analyzing corresponding characteristic equation at the positive equilibrium,it is proven that the positive equilibrium is locally asymptotically stable. That is,Human Immunodeficiency Virus( HIV) persists in body of the infected individuals,and numerical simulations are carried out to support the result.
出处 《四川理工学院学报(自然科学版)》 CAS 2016年第3期96-100,共5页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 国家青年科学基金项目(11301312) 山西大同大学青年科学基金项目(2014Q10 2015K5)
关键词 病毒感染 稳定性 免疫应答 正平衡点 virus infection stability immune response positive equilibrium
  • 相关文献

参考文献14

  • 1李益群,李建全,李琳.一类具有CTL作用的HIV感染模型的全局稳定性[J].生物数学学报,2013,28(3):467-472. 被引量:5
  • 2CUIFANG L V,LI Honghuang,ZHAO Huiyuan. Global stability for an HIV-1 infection model with Bedding- ton-DeAngelis incidence rate and CTL immune response[J].Commun Nonlinear Sci Numer Simulat2014,19(1 ):121-127.
  • 3HUANG Dongwei,ZHANG Xiao,GUO Yongfeng, et al.Analysis of an HIV infection model with treatments and delayed immune response[J].Applied Mathemati- cal Modelling,2016,40 (4):3081-3089.
  • 4NOWAK M A, BONHOEFFER S, HILL A M, et al. Viral Dynamics in hepatitis B virus infeetion[J].Pro- ceedings of the National academy of Sciences of the United States of America,1996,93 (9):4398-4402.
  • 5眭鑫,刘贤宁,周林.具有潜伏细胞和CTL免疫反应的HIV模型的稳定性分析[J].西南大学学报(自然科学版),2012,34(5):23-27. 被引量:10
  • 6郑重武,张凤琴.一类具有感染时滞的HIV模型的稳定性分析[J].数学的实践与认识,2010,40(13):247-252. 被引量:9
  • 7ELAIW A M,AZOZ S A.Global properties of a class of HIV infection models with Beddington-DeAngelis functional response [J].Mathematieal Metheods in the Applied Sciences,2013,36 (4):779 -794.
  • 8KOROBEINIKOV A.Global properties of basic virusdynamics models[J].Bulletin of Mathematical Biolo- gy,2014,66(4):879-883.
  • 9张少辉,靳祯.具有非线性发生率的传染病模型性态分析[J].中北大学学报(自然科学版),2012,33(4):353-357. 被引量:10
  • 10WANG Xia,AHMED E,SONG Xinyu.Olobal proper- ties of a delayed H1V infection model with CTL immune response[J].Applied Mathematics and Com- putation,2012 ,218 (18):9405 -9414.

二级参考文献67

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2Bonhoeffer S, May R M, Shaw G M and Nowak M A. Virus dynamics and drug therapy[J]. Proc Natl Acad SciUSA, 1997(94): 6971-6976.
  • 3Nowak M A and May R M. Virus Dynamics:Mathematical Principles of Immunology and Virology[M]. New York: Oxford University Press, 2000.
  • 4Andrei Korobeinikov, Global properties of basic virus dynamics models[J]. Bulletin of Mathematical Biology, 2004(66): 879-883.
  • 5Wang K, Wen W, Pang H, Liu X. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica D, 2007(226): 197-208.
  • 6Canabarro A A, Gdra I M, Lyra M L. Periodic solutions and chaos in a non-linear model for the delayed cellular immune response[J]. Physica A, 2004(342): 234-241.
  • 7Nelson P W, Perelson A S. Mathematical analysis of a delay differential equation models of HIV-1 infection[J]. Math Biosci, 2002(179): 74-79.
  • 8Gang Huang, Wanbiao Ma, Yasuhiro Takeuchi. Global properties of virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, in press.
  • 9W NELSON, S PERELSON. Mathematical analysis of delay differential equation models of HIV-1 infection [J]. Mathematical Biosciences , 2002, 179(1): 73--94.
  • 10L WANG, M Y LI. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells [J].Mathematical Biosciences, 2006, 200 (1) : 44-- 57.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部