摘要
建立具有Holling Ⅱ感染率且考虑免疫应答的HIV模型,讨论系统解的非负性和有界性,得到确定模型动力学性态的基本再生数,最后通过分析模型在平衡点处相应的特征方程,利用微分方程基本理论,证明模型在正平衡点处是局部渐近稳定的。即人类免疫缺陷病毒HIV将在个体体内持续存在,并且免疫应答会持续起作用,并用数值模拟验证结果。
A HIV model with Holling Ⅱinfection rate and immune response is built. Then the nonnegativity and boundedness of the solution are discussed,and the basic reproduction number which determines the dynamical behaviors of the infection model is obtained. Finally,by analyzing corresponding characteristic equation at the positive equilibrium,it is proven that the positive equilibrium is locally asymptotically stable. That is,Human Immunodeficiency Virus( HIV) persists in body of the infected individuals,and numerical simulations are carried out to support the result.
出处
《四川理工学院学报(自然科学版)》
CAS
2016年第3期96-100,共5页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
国家青年科学基金项目(11301312)
山西大同大学青年科学基金项目(2014Q10
2015K5)
关键词
病毒感染
稳定性
免疫应答
正平衡点
virus infection
stability
immune response
positive equilibrium