期刊文献+

行星轮系渐开线变位齿轮时变啮合刚度数值计算 被引量:5

Numerical Calculation of Planetary Gear Train Involute Modified Gear Time-Varying Meshing Stiffness
下载PDF
导出
摘要 齿轮啮合刚度的时变性是齿轮产生振动的主要原因,对齿轮时变刚度进行求解计算具有重要的意义。基于正变位行星轮系外齿轮齿形几何参数的计算方法,根据内外齿轮齿形的不同,推导出内齿轮齿形几何参数计算过程。利用石川公式中轮齿变形计算公式和刚度求解公式,通过Matlab编程求得正变位行星轮系内外啮合时变啮合刚度曲线,并与Weber能量法计算结果进行对比,结果表明:静态刚度最大误差为3.7%,不考虑幅值为很小值时的动态刚度,前4阶谐波幅值最大误差约为9.1%,精度满足要求,可以为行星轮系运动微分方程提供较为准确的啮合刚度。 The time-varying gear meshing stiffness is the main cause of gear vibration. To caculate the time-varying meshing stiffness has vital significance. Based on geometric parameters calculation method of external gear tooth profile in positive modified planetary gear train,according to the differences between external and internal gear tooth profiles,the geometric parameters calculation method of internal gear tooth profile was deduced in detail. Using Ishikawa tooth deformation calculation formula and stiffness calculation formula,positive modified planetary gear train internaland external time-varying meshing stiffness curves can be got by Matlab programming. Compared with the calculation result of Weber energy method,maximum static stiffness error is 3. 7% and the first four order harmonic amplitude maximum error is 9. 1% without considering the small amplitude value of the dynamic stiffness. Calculation accuracy meets the requirements. It can provide relatively accurate meshing stiffness for motion differential equation of the planetary gear train.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第6期38-44,共7页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(51475169)
关键词 变位齿轮 石川公式 外啮合刚度 内啮合刚度 modified gear Ishikawa formula external meshing stiffness internal meshing stiffness
  • 相关文献

参考文献10

  • 1LI R,YANG C,LIN T, et al. Finite element simulation of the dynamical behavior of a speed-increase gearbox [ J ]. Journal of materials processing technology, 2004, 150 ( 1 ) : 170 - 174.
  • 2DEL RINCON A F, VIADERO F, IGLESIAS M, et al. A model for the study of meshing stiffness in spur gear transmissions [ J ]. Mechanism and Machine Theory ,2013, 61:30 -58.
  • 3日本机械学会.齿轮强度设计资料[M].北京:机械工业出版社,1984..
  • 4TAVAKOLI M S, HOUSER D R. Optimum profile modifi- cations for the minimization of static transmission errors of spur gears [ J ]. Journal of Mechanical Design, 1986, 108(1) :86-94.
  • 5YANG D C H, Lin J Y. Hertzian damping, tooth friction and bending elasticity in gear impact dynamics[ J ]. Jour- nal of Mechanical Design, 1987,109 (2) : 189 - 196.
  • 6杨长辉,徐涛金,许洪斌,王智强,梁举科,李丙乾.基于Weber能量法的直齿轮时变啮合刚度数值计算[J].机械传动,2015,39(2):59-62. 被引量:14
  • 7颜海燕,唐进元,宋红光.直齿轮轮齿变形计算的数值积分法[J].机械传动,2005,29(2):7-9. 被引量:24
  • 8李亚鹏,孙伟,魏静,陈涛.齿轮时变啮合刚度改进计算方法[J].机械传动,2010,34(5):22-26. 被引量:45
  • 9陈再刚,邵毅敏.行星轮系齿轮啮合非线性激励建模和振动特征研究[J].机械工程学报,2015,51(7):23-23. 被引量:4
  • 10全国齿轮标准化技术委员会.GB/T3480-1997渐开线圆柱齿轮承载能力计算方法[s].北京:国家技术监督局,1997:6-62.

二级参考文献27

  • 1颜海燕,唐进元,宋红光.直齿轮轮齿变形计算的数值积分法[J].机械传动,2005,29(2):7-9. 被引量:24
  • 2方宗德 蒋孝煜.齿轮轮齿受载变形的激光散斑测量及计算[J].齿轮,1984,8(5).
  • 3日本机械学会.齿轮强度设计资料[M].北京:机械工业出版社,1984..
  • 4Song He.Effect of Sliding Friction on Spur and Helical Gear Dynamics and Vibro-Acoustics[D].Athens:The Ohio State University,2008:24-26.
  • 5Jian Lin,Robert G.Parker.Mesh Stiffness Variation Instabilities in Two-Stage Gear Systems[J].Journal of Vibration and Acoustics.ASME,2002(124):68-76.
  • 6J.Lin,R.G.Parker.Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation[J].Journal of Sound and Vibration,2002,249(1):129-145.
  • 7Y.Cai.Simulation on the Rotational Vibration of Helical Gears in Consideration of the Tooth Separation Phenomenon (A New Stiffness Function of Helical Involutes Tooth Pair)[J].Journal of Mechanical Design.ASME,1995(117):460-469.
  • 8陈作炳 刘志善.直齿轮刚度分析和计算.齿轮,1987,11(1):11-14.
  • 9J.-H.Kuang,A.-D.Lin.Theoretical Aspect of Torque Responses in Spur Gearing due to Mesh Stiffness Variation[J].Mechanical Systems and Processing,2003,17(2):255-271.
  • 10刘鸿文.材料力学[M].北京:高等教育出版社,2010.

共引文献98

同被引文献33

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部