期刊文献+

基于SVM的肿瘤特征基因提取与基因表达数据分析 被引量:3

Extraction of Cancer Informative Genes and Gene Expression Data Analysis Based on Support Vector Machine
下载PDF
导出
摘要 提出一种基于支持向量机的肿瘤基因表达谱数据挖掘方法。首先采用信噪比方法对白血病、结肠癌、肺癌数据提取特征基因,生成特征基因子集。然后通过支持向量机分类模型对特征基因子集进行机器学习训练分类。实验结果表明:急性白血病、结肠癌只需4个特征基因,均获得100%的10折交叉验证分类准确率。最后为了有效地排除噪声基因进而挑选出精确度更高的分类特征基因,采用多尺度小波阈值法对肺癌数据进行降噪处理,降噪后仅需5个特征基因获得96.61%的分类准确率。 This paper put forward cancer gene expression profile data mining methods based on support vector machine( SVM). Firstly,informative genes were extracted from leukemia,colon cancer and lung cancer data by signal-to-noise ratio method, thus generating informative genes subsets. Then informative genes subsets were classified by machine learning and training through support vector machine( SVM) classification model. The experimental results show that only fourinformative genes are needed for acute leukemia and colon cancer to get 100% classification accuracy by 10 fold cross-validation. Finally,multi-scale wavelet threshold denoising method was established to reduce the noise of the data in lung cancer gene expression profiles for getting higher classification accuracy. After noise reduction,only five informative genes are needed to get 96. 61% classification accuracy.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第6期102-108,共7页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(41204115) 山东省自然科学基金资助项目(ZR2013AM007 ZR2014FL021) 山东省高等学校科技计划项目(J13LI54)
关键词 基因表达谱 肿瘤分类 特征基因 信噪比 支持向量机 gene expression profile cancer classification informative gene signal to noise ratio support vector machine
  • 相关文献

参考文献23

  • 1NGUYEN D V, ROCKED M. Tumor classification by partial least squares using microarray expression data [ J ]. Bioinformatics,2002,18 ( 1 ) :39-50.
  • 2YU B,ZHANG Y. The analysis of colon cancer gene ex- pression profiles and the extraction of informative genes[ J ]. J Comput Theor Nanosci ,2013,10 (5) : 1097-1103.
  • 3WANG S L, LI X L, ZHANG S W, et al. Tumor classifi- cation by combining PNN classifier ensemble with neigh- borhood rough set based gene reduction [ J ]. Computers in Biology and Medicine ,2010,40 : 179-189.
  • 4GOLUB T R,SLONIM D K ,TAMAYO P,et al. Molecular classification of cancer : class discovery and class predic- tion by gene expression monitoring [ J ]. Science, 1999, 5439 (286) :531-537.
  • 5ZHANG H P,YU C Y,SINGER B,et al. Recursive parti- tioning for tumor classification with gene expression mi- croarray data [ J ]. Proe. Natl Acad. Sci. , USA ,2001,98 : 6730-6735.
  • 6PINTO DA COSTA J F, ALONSO H, ROQUE L. A weighted principal component analysis and its application to gene expression data [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011,8 ( 1 ) : 246-252.
  • 7HUANG D S ,ZHENG C H. Independent component anal- ysis based penalized discriminant method for tumor clas- sification using gene expression data [ J ]. Bioinformatics, 2006,22( 15 ) : 1855-1862.
  • 8CHENG X P,CAI H M,ZHANG Y,et al. Optimal combi- nation of feature selection and classification via local hy- perplane based learning strategy [ J ]. BMC Bioinformat- ics,2015,16:219.
  • 9ZHENG C H,HUANG D S,ZHANG L,et al. Tumor clus- tering using non-negative matrix factorizatiowith gene se- lection [ J ]. IEEE Transactionson Information Technology in Biomedicine ,2009,13 (4) :599-607.
  • 10TORONEN P, KOLEHMAINEN M, WONG G, et al. Analysis of gene expression data using self-organizing maps [ J ]. FEBS Letter, 1999,451 : 142-146.

同被引文献16

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部