期刊文献+

水辅混炼挤出聚苯乙烯/氧化石墨烯纳米复合材料的微观结构及流变与热性能

Microstructure,Rheological Behavior and Thermal Stability of Polystyrene/Grapheme Oxide Nanocomposites Prepared by Water-assisted Mixing Extrusion
下载PDF
导出
摘要 采用自主设计的水辅混炼挤出设备,制备3种氧化石墨烯(GO)含量(0.1%、0.3%、0.5%,质量分数,下同)的聚苯乙烯(PS)/GO纳米复合材料,观察样品的微观结构,测试其流变性能和热性能。结果表明,GO被较好剥离且呈网状较均匀地分散在PS基体中,这主要归因于螺杆混炼流场不断细化PS熔体中的GO悬浮液以及水对熔体的塑化和溶胀效应促进PS分子链插层进入GO片层之间的共同作用;低频区PS/GO样品的储能模量、复数黏度和松弛时间均比纯PS样品的高,这是因为较均匀分散的网状GO片与PS之间形成较强的分子间作用力,降低了PS分子链的活动性;PS/GO样品的热稳定性比纯PS样品的高,这归因于GO片在PS基体中呈网状分布和GO表面存在π键。 Three polystyrene/graphene oxide (PS/GO) nanocomposites (GO contents 0. 1 wt%, 0. 3 wt%, and 0. 5 wt%) were prepared using home-designed water-assisted-mixing extrusion equipment. Microstructure, rheological behavior, and thermal stability of the nanocomposite samples were investigated. It demonstrated that GO was well exfoliatedand dispersed in network structure in PS matrix. This was attributed to the fact that PS chain was easy to intercalate and exfoliate GO layers. PS/GO samples exhibited higher elastic moduli, complex viscosities, and relaxation times at low frequencies as compared with neat PS, which was because of the stronger intermolecular force between well dispersed GO layers in network structure and PS. PS/GO samples exhibited higher thermal stability than neat PS sample, which was due to the GO network in PS matrix and π bond at GO surface.
出处 《中国塑料》 CAS CSCD 北大核心 2016年第6期79-85,共7页 China Plastics
关键词 水辅助混炼挤出 氧化石墨烯 聚苯乙烯 微观结构 流变性能 热稳定性 water-assisted mixing extrusion grapheme oxide polystyrene microstructure rheo-logical behavior thermal stability
  • 相关文献

参考文献23

  • 1Rao C N R, Sood A K, Subrahmanyam K S. Graphene: The New Two-dimensional Nanomaterial [J ] . Ange wandte Chemie International Edition, 2009, 48 ( 42 ) : 7752-7777.
  • 2Geim A K. Graphene: Status and Prospects [J]. Science, 2009, 5934 (324): 1530-1534.
  • 3Sarawanan N, Rajasekar R, Mahalakshmi S, et al. Gra- phene and Modified Graphene-based Polymer Nanocom- posites-A Review [J]. Journal of Reinforced Plastics and Composites, 2014, 33(12): 1158-1170.
  • 4. Compton O C, Nguyen S T. Graphene Oxide, Highly Re- duced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-based Materials [J]. Small, 2010, 6 (6) : 711-723.
  • 5Li D, Mueller M B, Gilje S, et al. Processable Aqueous Dispersions of Graphene Nanosheets [J]. Nature Nano- technology, 2008, 3(2): 101-105.
  • 6Liang J, Huang Y, Zhang L, et al. Molecular-level Dis- persion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of Their Nanocomposites [J]. Advanced Functional Materials, 2009, 19(14): 2297-2302.
  • 7何大方,吴健,刘战剑,沈丽明,汪怀远,暴宁钟.面向应用的石墨烯制备研究进展[J].化工学报,2015,66(8):2888-2894. 被引量:45
  • 8Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale Graphene Integrated Circuit [J]. Science, 2011, 6035(332) .- 1294-2894.
  • 9Ma J, Meng Q S, Michelmore A,et al. Covalently Bonded Interfaces for Polyrner/Graphene Composites [J]. Journal of Materials Chemistry A, 2013, 13 (1): 4255-4264.
  • 10You F, Wang D R, Li X X, et al. Interracial Engineering of Polypropylene/Graphene Nanocomposites: Improve- ment of Graphene Dispersion by Using Tryptophan as a Stabilizer [J]. RSC Advance, 2014, 17 (4).- 8799-8807.

二级参考文献26

  • 1李洪钟.聚焦结构、界面与多尺度问题,开辟化学工程的新里程[J].过程工程学报,2006,6(6):991-996. 被引量:12
  • 2TanYingjie(谭英杰),LiangYurong(梁玉蓉),WangLinyan(王林艳),HuGang(胡刚),ZhangTao(张涛),TangGuangdao(唐光道).New method to prepare highperformance isobutylene-isoprene rubber/clay nanocomposites [J]. CIESC Journal , 2012, 63 (7) 2303-2309.
  • 3Du M L, Guo B C, Jia D M. Newly emerging applications of halloysite nanotubes: a review [ J]. Polymer International, 2010, 59 (5): 574 582.
  • 4Lecouvet B, Gutierrez J G, Sclavons M, Bailly C. Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites [J]. Polymer Degradation and Stability, 2011, 96 (2): 226-235.
  • 5DuML, GuoBC, CaiXJ, JiaZX, LiuMX, JiaDM. Morphology and properties of halloysite nanotubes reinforced polypropylene nanoeomposites [J]. E Polymers, 2008, 130:1-14.
  • 6Ye Y P, Chen H B, Wu J S, Lin Ye. High impact strength epoxy nanocomposites with natural nanotubes [J]. Polymer, 2007, 48 (21): 6426-6433.
  • 7Deng S Q, Zhang J N, Ye L. Halloysite epoxy nanocomposites with improved particle dispersion through ball mill homogenization and chemical treatments [ J]. Composites Science and Technology, 2009, 69 ( 14 ) : 2497-2505.
  • 8Murariu M, Dechief A L, Paint Y, Peeterbroeck S, Bonnaud L, Duhois P. Polylactide ( PLA ) -halloysite nanocomposites : production, morphology and key- properties [J]. Journal of Polymers and the Environment, 2012, 20 (4): 932-943.
  • 9Guo B, Zou Q, Lei Y, Jia D. Structure and performance of polyamide 6/halloysite nanotubes nanoeomposites [J]. Polymer Journal, 2009, 41 (10): 835-842.
  • 10Pooria P, Ismail H, Ahmad F M N, Abu B A. Influence of maleie anhydride grafted ethylene propylene diene monomer ( MAH-g-EPDM ) on the properties of EPDM nanocomposites reinforced by halloysite nanotuhes [J]. Polymer Testing, 2009, 28 (5): 548-559.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部