期刊文献+

基于传感器信息的AUV海底地形跟踪研究 被引量:2

Autonomous Underwater Vehicle Undersea Bottom-following Based on Sensor Information
下载PDF
导出
摘要 该文研究了配置高度计和深度计的水下机器人海底地形跟踪的问题。采用扩展卡尔曼滤波对高度计和深度计数据进行数据融合,提高了AUV对海底高度信息感知的能力,通过最小二乘法对海底地形坡度进行估计,预测海底地形变化趋势,提高了水下机器人对海底地形跟踪的能力。最后,通过Matlab仿真对海底地形跟踪算法进行了验证,实验结果表明该文提出的方法是有效的。 This paper studied the problem of undersea bottom-following through using the autonomous underwater ve- hicle(AUV)equipped with altimeter and depth gauge. We can improve the ability of AUV to perceive the information of the seabed by using the extended kalman fiher(EKF) to complete the information fusion of data come from al- timeter and depth gauge. The seabed terrain slope is estimated by the least square method and then the trend of the seabed terrain can be predicted,which improve the ability of the AUV to track the seabed terrain. In the end,the seabed terrain tracking algorithm was verified by Matlab simulation,and the experimental results showed that the proposed method was effective.
作者 徐红丽 陈巩
出处 《自动化与仪表》 2016年第6期5-9,共5页 Automation & Instrumentation
基金 中国科学院科技创新重点部署项目(KGFZD-125-014)
关键词 自主水下机器人 坡度估计 地形跟踪 扩展卡尔曼滤波 autonomous underwater vehicle (AUV) slope estimate bottom-following extended kalman filter (EKF)
  • 相关文献

参考文献7

  • 1Grasmueck M,Eberli G P,Viggiano D A,et al.Autonomous un- derwater vehicle(AUV)mapping reveals corm mound distribution, morphology,and oceanography in deep water of the Straits of Florida[J].Geophysical Research Letters,2006,33(23) :430--452.
  • 2Singh H,Yoerger D,Bachmayer R,et al.Sonar mapping with the autonomous benthic explorer(ABE)[C]//International Symposium on Unmanned Untethered Submersible Technology University of New Hampshire-matine Systems, 1995 : 367-375.
  • 3Kajbafzadeh A M,Jangouk P,Yazdi C A.Anterior urethral valve associated with posterior urethral valves[J].Journal of Pediatric Urology, 2005,1 (6) : 433-435.
  • 4Cruz N,Matos A C.The MARES AUV,a modular autonomous robot for environment samplinl~C]//OCEANS 2008, IEEE,2008:1-6.
  • 5Pi S,He B,Zhang S,et al.Stereo visual SLAM system in un- derwater environment[C]//OCEANS 2014-TAIPEI. IEEE,2014:1-5.
  • 6陈志敏,薄煜明,吴盘龙,陈富.基于新型粒子群优化的粒子滤波雷达目标跟踪算法[J].信息与控制,2012,41(4):413-418. 被引量:8
  • 7王星星,吴贞焕,杨国安,贾光.基于改进粒子群算法的最小二乘影响系数法的理论及实验研究[J].振动与冲击,2013,32(8):100-104. 被引量:18

二级参考文献14

共引文献24

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部