期刊文献+

煤燃烧过程中铍的迁移转化特性研究 被引量:3

Investigation on the transfer-transformation behavior of beryllium during coal combustion
下载PDF
导出
摘要 通过热力学平衡模拟计算煤燃烧过程中铍的形态转化,采用高温真空管式炉进行含铍化合物与矿物的固固反应实验,以及富铍煤中加入添加剂的燃烧实验,通过X射线衍射仪(XRD)、X射线荧光探针(XRF)以及电感耦合等离子质谱仪(ICP-MS)揭示煤燃烧过程中铍的迁移转化规律。结果表明,模拟计算发现铍只与含铝化合物反应生成BeAl_2O_4和Be Al6O10,同时固固反应实验也印证了这一结论,但反应温度在1 000℃左右,明显高于模拟计算温度650℃。添加Al_2O_3的富铍煤在燃烧时,由于铍与Al_2O_3发生反应,铍的释放率明显降低,最高降低33%以上;添加了伊利石的富铍煤,由于伊利石与铍的反应温度高于Al_2O_3,其抑制作用弱于Al_2O_3;而高岭石由于与铍的反应温度过高,在高岭石与铍发生反应产生抑制效果之前,部分铍已经在燃烧过程中释放出去,因此,抑制效果最差。 The thermodynamic equilibrium calculation was conducted to estimate the beryllium conversion in the combustion process of coal,and the high temperature vacuum tube furnace was used to research the beryllium compounds reaction with other solid substances and the coal combustion experiments by adding sorbents.X-ray diffraction( XRD),X-ray fluorescence probe( XRF) and inductively coupled plasma-mass spectrometry( ICPMS) were used to reveal the transformation behavior of beryllium during coal combustion.The results indicate that the beryllium only reacts with aluminum compounds and the reaction resultants are BeAl_2O_4 and Be Al_6O_(10),the solid-solid reaction experiments are in agreement with thermodynamic calculation results,but the actual reaction temperature is about 1 000 ℃,far above the thermodynamic calculation temperature 650 ℃.Because beryllium reacts with Al_2O_3 in combustion,the release rate of beryllium in the coal sample added with Al_2O_3 reduces greatly by up to 33%.Moreover,the inhibition of illite to beryllium release for coal combustion with addition of illite is weaker owing to a higher reaction temperature of illite with beryllium than that of Al_2O_3.Kaolinite,because its reaction temperature with beryllium is too high,has the lowest inhibition effect.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2016年第6期648-653,共6页 Journal of Fuel Chemistry and Technology
基金 国家自然科学基金(51376074) 国家重点基础研究发展规划(973计划 2014CB238904)资助~~
关键词 煤燃烧 迁移转化 抑制作用 beryllium coal combustion transformation inhibition
  • 相关文献

参考文献19

  • 1刘海滨,姚剑君.铍病发病机制和诊断的研究进展[J].工业卫生与职业病,1997,23(4):241-244. 被引量:4
  • 2PROFUMO A, SPINI G, CUCCA L, PESAVENTO M. Determination of inorganic beryllium species in the particulate matter of emissions and working areas[J]. Talanta, 2002, 57:929-934.
  • 3ZEVENHOVEN R,KILPINEN P. Control of Pollutants in Flue Gases and Fuel Gases[M]. Espoo:Turku, 2004.
  • 4NODELMAN I G, PISUPATI S V, MILLER S F,SCARONI A W. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel[J]. J Hazard Mater, 2000, 74:47-59.
  • 5SWAINE D J. Trace Elements in Coal[M]. London:Butter words, 1990.
  • 6U.S.National Committee for Geochemistry. Panel on the Trace Elements Geochemistry of Coal Resource Development Related to Health, Trace Elements Geochemistry of Coal Resource Development Related to Environmental Quality and Health[M]. Washington D C:National Academy Press, 1990.
  • 7GB16297-1996.大气污染物综合排放标准[S].[S].,..
  • 8中国国家统计局. 中国能源统计年鉴[M]. 北京:中国统计出版社, 2010-2014.
  • 9NRIAGU J O, PACYNA J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988, 333:134-139.
  • 10SWAINE D J,GOODARZI F. Environmental Aspects of Trace Elements in Coal[M]. Berlin:Springer, 1995.

二级参考文献24

共引文献203

同被引文献105

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部