期刊文献+

大型海藻厌氧发酵特性研究 被引量:1

Characteristics of Anaerobic Digestion of Marine Macro-algae
下载PDF
导出
摘要 文章采用中温批式厌氧发酵工艺,研究清洗及未清洗海带在不同接种率下,盐度对厌氧发酵特性的影响。研究结果表明:相同底物浓度发酵时,未清洗海带的产气性能要优于清洗海带,无机盐对产气率提高约13%~25%。未清洗海带组在盐度为12.96 g·L^(-1)时的产气性能最佳,产气率和产甲烷率分别为464.4±0.39和288.28±0.24 m L CH_4·g^(-1) VS_(added),比相同条件下清洗海带的产甲烷率提高29.56%,此时发酵液中主要金属离子浓度K^+4780 mg·L^(-1),Mg^(2+)250 mg·L^(-1),Ca^(2+)130 mg·L^(-1)和Na^+1600 mg·L^(-1),表明适宜浓度的无机盐有利于厌氧发酵的产气性能。 The effects of salinity on anaerobic digestion performance of Laminaria Japonica were investigated under the different inoculation rate adopting batch mesophilic experiments. The results indicated that the biogas production performance of the non-washed Laminaria Japonica were better than that of the washed groups,which the biogas yield was increased by13% ~ 25%. And the best biogas production of 464. 4 ± 0. 39 m L·g^-1VSaddedand best methane production of 288. 28 ±0. 24 m L CH_4·g^-1 VS_(added) were obtained for the non-washed Laminaria Japonica under condition of salinity concentration of 12. 96 g·L^-1,and K~+,Mg^2 +,Ca^2 +,Na+concentration of 4780 mg·L^-1,250 mg·L^-1,130 mg·L^-1 and 1600 mg·L^-1 respectively. It showed that the suitable concentration of inorganic salt was beneficial to the gas production performance.
出处 《中国沼气》 北大核心 2016年第3期3-8,共6页 China Biogas
基金 国家高技术研究发展计划(863计划)(2012AA101802) 中国科学院重点部署项目资助(KGZD-EW-304-1) 广东省科技计划项目(2015B020215011) 广州市科技计划项目(201508020098)
关键词 海带 接种率 盐度 厌氧发酵 甲烷 Laminaria Japonica inoculation rate salinity anaerobic digestion methane
  • 相关文献

参考文献14

  • 1P S Nigam, A Singh. Production of liquid biofuels from renewable resources [ J ]. Progress in Energy and Com- bustion Science, 2011, 37 ( 1 ) : 52 - 68.
  • 2P Morand, M Merceron. Macroalgae population and sus- tainabihty[J]. Coast Res, 2005, 21 : 1009 - 1020.
  • 3I Paya, B Santelices. Macroalgae Survive Digestion by Fi- shes[J]. Journal of Phycology, 1989, 25 (1) : 186 - 188.
  • 4R Rajkumar,Z Yaakob,M S Takriff. Potential of the Mi- cro and Macro Algae for Biofuel Production : A Brief Re- view[ J]. Bioresources, 2014, 9(1) : 1606 - 1633.
  • 5J V Oliveira, M M Alves, J C Costa. Design of experi- ments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilar- ia vermiculophylla [ J ]. Bioresource Technology, 2014, 162 : 323 -330.
  • 6S Tedesco, K Y Benyounis, A G Olabi. Mechanical pre- treatment effects on macroalgae-derived biogas production in co- digestion with sludge in Ireland [ J ]. Energy,2013, 61:27-33.
  • 7J H Mussgnug, V Klassen, A Schluter, et al. Microalgae as substrates for fermentative biogas production in a com- bined biorefinery concept [ J ]. J Biotechnol, 2010, 150 (1): 51 -56.
  • 8M Daroch, S Geng, G Y Wang. Recent advances in liquid biofuel production from algal feedstocks[ J ]. Applied En- ergy, 2013, 102:1371 - 1381.
  • 9F Passos, M Hemandez-Marine, J Garcia, et al. Long - term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment [ J ]. Water Research, 2014, 49 : 351 - 359.
  • 10R Harun, W S Y Jason, T Cherrington, et al. Exploring alkaline pre-treatment of microalgal biomass for bioetha- nol production [ J ]. Applied Energy, 2011, 88 ( 10 ) : 3464 - 3467.

二级参考文献27

  • 1胡晓明,张建萍,张无敌,尹芳,李建昌,徐锐.香根草中温发酵产沼气的试验研究[J].科技信息,2008(27):8-9. 被引量:19
  • 2Prochnow A,Heiermann M,Plochl M. Bioenergy from permanent grassland-a review:1.Biogas[J].BIORESOURCE TECHNOLOGY,2009,(21):4931-4944.
  • 3Taherzadeh M J,Karimi K. Pretrcatment of 1ignocellulosic wastes to improve ethanol and biogas production:a review[J].INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,2008,(09):1621-1651.
  • 4Masse D. Methane yield from switchgrass harvested at different stages of development in Eastern Canada[J].BIORESOURCE TECHNOLOGY,2010,(24):9536-9541.
  • 5Lewandowski I,Scurlock J M O,Lindvall E. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J].Biomass and Bioenergy,2003,(04):335-361.
  • 6Prochnow A,Heiermann M,Plochl M. Bioenergy from permanent grassland-a review:2.Combustion[J].BIORESOURCE TECHNOLOGY,2009,(21):4945-4954.
  • 7Vadas P A,Barnett K H,Undersander D J. Economics and energy of ethanol production from alfalfa,corn,and switchgrass in the upper midwest,USA[J].Bioenergy Research,2008,(01):44-55.
  • 8Jackowiak D,Frigon J C,Ribeiro T. Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment[J].BIORESOURCE TECHNOLOGY,2011,(03):3535-3540.
  • 9Seppala M,Paavola T,Lehtomaki A. Biogas production from boreal herbaceous grasses-specific methane yield and methane yield per hectare[J].BIORESOURCE TECHNOLOGY,2009,(12):2952-2958.
  • 10Geber U. Cutting frequency and stubble height of reed canary grass (Phalaris arundinacea L.):influence on quality and quantity of biomass for biogas production[J].Grass and Forage Science,2002,(04):389-394.

共引文献15

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部