摘要
[目的/意义]在文献计量学框架内研究一种论文主题词相关性分析方法——以作者为关联背景的主题词耦合分析方法。[方法/过程]依据主题词在同一作者论文中共同出现的频次,通过聚类分析、因子分析和多维尺度分析,测算主题词间的相似性距离,据此度量主题词间的耦合强度,挖掘主题词间的相关关系。以高校图书馆服务研究为实例,利用典型论文内容验证所挖掘的相关关系的合理性。[结果/结论]以作者为关联背景的主题词耦合分析方法是结合内容耦合、文献集合内共词、基于作者背景等新思路而形成的。通过实例验证,这种分析方法在一定程度上能够揭示领域研究主题间隐含的关联,为知识服务提供一种研究隐性知识发现和创新点发现的实用途径。
[Purpose/significance] The paper is to discuss an analytical method for article subject terms correlativity in the framework of bibliometrics, that is subject terms coupling analysis method basing on author as related background. [Method/process] The paper counts co-occurrence frequencies of subject terms in the same author's articles,uses cluster analysis, factor analysis and multidimension analysis to calculate the similarity distance of subject terms, so as to measure coupling coefficient and find correlativities among subject terms. The paper takes university library service research for example, uses the content of typical articles to verify the reasonability of the correlativities. [Result/conclusion] Subject terms coupling analysis method basing on author as related background is formed by integrating new ideas such as content coupling, co-word in document set and author's background-based analysis.Through the example, this method could reveal concealed relations among research topics to a certain degree, so as to provide a practical way to find tacit knowledge and innovative points in the research fields for knowledge service.
出处
《情报探索》
2016年第6期1-6,共6页
Information Research
关键词
主题词耦合
主题词相关性
相关性分析
耦合分析
共词分析
subject terms coupling
subject terms correlativity
correlativity analysis
coupling analysis
co-word analysis