期刊文献+

一种低复杂度降低FBMC-OQAM峰均值比的PTS双层搜索算法 被引量:1

A Low Complexity PTS Algorithm with Dual Layered Phase Sequencing to Reduce PAPR of the FBMC-OQAM Signal
下载PDF
导出
摘要 最近采用偏移正交幅度调制的滤波器组多载波系统(FBMC-OQAM)吸引广泛的关注。由于FBMC-OQAM信号的叠加性,导致峰均值比(PAPR)较大,而大部分传统OFDM的降低PAPR技术不适用。为了不引入新的误码率,采用PTS算法降低FBMC-OQAM峰均值比是较好的选择,但现有基于PTS降低FBMC-OQAM峰均值比方案的复杂度都较高。通过对PTS算法进行改进,提出了一种新的在FBMC-OQAM系统中采用双层搜索的PTS算法(D-PTS)。该算法能以较小的复杂度降低FBMC-OQAM信号的PAPR,且不会引起信号畸变,理论分析和数值仿真证实了新算法的性能。 Recently,the filter bank multicarrier with offset quadrature amplitude modulation( FBMC-OQAM)has attracted increasing attention. Because of the overlapping structure of FBMC-OQAM signal,resulting in a large peak-to-average( PAPR),and the most of traditional peak-to-average reduction methods for OFDM are not effective for FBMC-OQAM signals. In order not to introduce a new bit error rate,Using the PTS Algorithm is a better choose. But the existing algorithms based on the PTS for FBMC-OQAM signal are all with a high complexity. In this paper,we introduce a new PTS algorithm with dual layered phase sequencing( D-PTS). This method can reduce PAPR of the FBMC-OQAM signal with a low complexity and non-signal distortion. Theoretical analysis and numerical simulations confirm the performance of this algorithm.
出处 《科学技术与工程》 北大核心 2016年第17期62-70,共9页 Science Technology and Engineering
基金 国家自然科学基金(61271259 61471076) 重庆市教委科学技术研究项目(KJ120501 KJ130536)课题 长江学者和创新团队发展计划(IRT1299) 重庆市科委重点实验室专项经费(CSTC)课题资助
关键词 滤波器组多载波 峰均值比 偏移正交幅度调制 双层搜索的PTS算法 低复杂度 FBMC PAPR OQAM PTS with dual layered ph ase sequencing low complexity
  • 相关文献

参考文献23

  • 1尤肖虎,潘志文,高西奇,曹淑敏,邬贺铨.5G移动通信发展趋势与若干关键技术[J].中国科学:信息科学,2014,44(5):551-563. 被引量:722
  • 2谢显中.第5代移动通信基本要求与新型多址复用技术[J].重庆邮电大学学报(自然科学版),2015,27(4):434-440. 被引量:22
  • 3Andrews J G, Buzzi S, Wan C, et al. What will 5G be? Selected Areas in Communications IEEE Journal on, 2014; 32 (6): 1065-1082.
  • 4You X H, Pan Z W, Gao X Q, et al. The development trend and some key technologies of 5 G mobile communication. Science China Information Sciences, 2014 ; (5) :551-563.
  • 5Xie Xianzhong. Key requirements and multi-access muhiplexing techniques for 5G. Journal of Chongqing University of Posts and Telecom- munications ( Natural Science Edition ) , 2015 ;27 (4) :434-440.
  • 6Weimann G, Khorana H G. 5GNOW: challenging the LTE design paradigms of orthogonality and synchronicity. Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th. IEEE, 2012:1-5.
  • 7Farhang-Boroujeny B. OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine, 2011 ; 28 ( 3 ) :92-112.
  • 8Medjahdi Y, Terre M, Ruyet D L, et al. Performance analysis in the downlink of asynchronous OFDM/FBMC based multi-cellular net-works. Wireless Communications IEEE Transactions, 2011 ; 10 ( 8 ) : 2630-2639.
  • 9Rahmatallah Y, Mohan S. Peak-to-average power ratio reduction in OFDM systems: a survey and taxonomy. IEEE Communications Surveys & Tutorials, 2013 ; 15 ( 15 ) : 1567-1592.
  • 10Varghese N, Chunkath J, Sheeba V S. Peak-to-average power ratio reduction in FBMC-OQAM system. Advances in Computing and Communications (ICACC), 2014 Fourth International Conference. IEEE, 2014 : 286-290.

二级参考文献105

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献739

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部