期刊文献+

尺度自适应的压缩跟踪算法 被引量:3

Scale adaptive compressive tracking algorithm
下载PDF
导出
摘要 针对原始压缩跟踪使用固定大小的跟踪框来跟踪目标,提出一种尺度自适应的压缩跟踪算法,在原始的压缩跟踪算法的基础上加入粒子滤波方法,利用分类器的响应产生粒子权重,根据粒子权重大小重新采样,从而避免了粒子退化,利用一个2阶的状态转换模型去估计目标的当前位置和尺度大小,使得跟踪算法能适应运动目标的尺度变化。实验结果表明,与原始的压缩跟踪算法相比,该算法在视频流中的跟踪性能得到提升。 The fixed-size tracking box is usually employed to match the target in the traditional compressive tracking algorithm. Much success has been demonstrated in most cases, while it may fail if the target scale changes a lot. In this paper it proposes a scale-adaptive compressive tracking algorithm that can optimize the tracking of the moving target. The algorithm exploits particle filter method on the basis of original compressive tracking algorithm. The classifier response is utilized to generate particle importance weight and a resample procedure preserves samples according to weight to avoid the degeneracy of the particle. Furthermore, a 2-order transition model is presented to estimate the current position and scale status which enable the algorithm to adapt to the scale change of moving targets automatically. The experimental results show that the proposed scale-adaptive compressive tracking algorithm performs favorably against several state-of-the-art tracking algorithms on challenging sequences in terms of the center location and the overlap rate.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第14期180-185,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61271352) 中国科学院上海微系统与信息技术横向研发基金
关键词 压缩跟踪 尺度自适应 粒子滤波 实时 compressive tracking scale adaptive particle filter real-time
  • 相关文献

参考文献15

  • 1Adam A,Rivlin E,Shimshoni I.Robust fragments-basedtracking using the integral histogram[C]//2006 IEEE ComputerSociety Conference on Computer Vision and PatternRecognition,2006,1:798-805.
  • 2Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 3Ross D A,Lim J,Lin R S,et al.Incremental learning forrobust visual tracking[J].International Journal of ComputerVision,2008,77(1/3):125-141.
  • 4Wang Dong,Lu Huchuan,Chen Yenwei.Incremental MPCAfor color object tracking[C]//2010 20th International Conferenceon Pattern Recognition(ICPR),2010.
  • 5Hu W,Li X,Zhang X,et al.Incremental tensor subspacelearning and its applications to foreground segmentationand tracking[J].International Journal of Computer Vision,2011,91(3):303-327.
  • 6Mei X,Ling H.Robust visual tracking using l1 minimization[C]//2009 IEEE 12th International Conference onComputer Vision,2009:1436-1443.
  • 7Li Hanxi,Shen Chunhua,Shi Qinfeng.Real-time visualtracking using compressive sensing[C]//2011 IEEE Conferenceon Computer Vision and Pattern Recognition(CVPR),2011.
  • 8Avidan S.Support vector tracking[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2004,26(8):1064-1072.
  • 9Grabner H,Grabner M,Bischof H.Real-time tracking viaon-line boosting[C]//BMVC,2006,1(5).
  • 10Grabner H,Leistner C,Bischof H.Semi-supervised on-lineboosting for robust tracking[M]//Computer vision-ECCV2008.Berlin/Heidelberg:Springer,2008:234-247.

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部