期刊文献+

基于图像特征分块的分数阶微分图像增强算法 被引量:6

Fractional-order differential image enhancement algorithm based on image characteristics division
下载PDF
导出
摘要 为了改善图像增强效果,突出图像主体,研究了一种基于图像特征分块的分数阶微分图像增强新算法。该算法通过构造分数阶微分掩模算子,根据图像特征分块的结果设定分数阶阶数,形成分数阶阶数矩阵,然后将其代入掩模算子,并与原图像进行运算。实验中分别对原图像和加入了高斯噪声的图像进行处理,并比较了不同参数时图像增强效果。实验结果表明,该算法能较大地增强图像主体部分的纹理,同时一定程度上抑制了背景及平滑区域图像噪声的增加。在图像平均梯度略低于传统分数阶微分增强算法的程度上,该算法对图像纹理的增强幅度更大。 To improve the effect of image enhancement and highlight the image subject, a new fractional-order differential image enhancement algorithm is proposed based on image characteristics division. By constructing a fractional-order dif-ferential mask operator, the different fractional orders are determined according to the results of image features segmenta-tion, and a matrix with the orders is generated. The matrix is substituted into the mask operators to calculate with the original image. During the experiments, the original image and the image added Gaussian noise are processed respectively. In addi-tion, the effect of enhanced images is compared in the case of different parameters. Experimental results show that the algorithm enhances the texture of the main part of the image significantly and restrains the increase of image noise in background and smooth area to a certain extent. This algorithm has a better performance on increasing image texture when the average image gradient is slightly lower than that of the traditional fractional-order differential image enhancement algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第14期186-191,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61161006)
关键词 分数阶微分 图像增强 图像特征分块 图像熵 峰值信噪比 fractional-order differential image enhancement image characteristics division image entropy Peak Signal to Noise Ratio(PSNR)
  • 相关文献

参考文献14

  • 1黄果,许黎,蒲亦非.分数阶微积分在图像处理中的研究综述[J].计算机应用研究,2012,29(2):414-420. 被引量:52
  • 2Pu Yifei,Zhou Jiliu,Yuan Xiao.Fractional differential mask:a fractional differential-based approach for multiscale textureenhancement[J].IEEE Transactions on Image Processing,2010,19(2):491-511.
  • 3Che Jin,Shi Yishuai,Xiang Yang,et al.The fractional differentialenhancement of image texture features and itsparallel processing optimization[C]//5th InternationalCongress on Image and Signal Processing(CISP),2012:330-333.
  • 4Gao Chaobang,Zhou Jiliu,Zheng Xiuqing,et al.Image enhancementbased on improved fractional differentiation[J].Journal of Computational Information Systems,2011,7(1):257-264.
  • 5杨柱中,周激流,晏祥玉,黄梅.基于分数阶微分的图像增强[J].计算机辅助设计与图形学学报,2008,20(3):343-348. 被引量:98
  • 6陈庆利,黄果,张秀琼,杨俊,项炜.数字图像的Caputo分数阶微分增强[J].计算机辅助设计与图形学学报,2013,25(4):519-525. 被引量:8
  • 7Garg V,Singh K.An improved Grunwald-Letnikov fractionaldifferential mask for image texture enhancement[J].InternationalJournal of Advanced Computer Science andApplications,2012,3(3):130-135.
  • 8PU YiFei,WANG WeiXing,ZHOU JiLiu,WANG YiYang,JIA HuaDing.Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation[J].Science in China(Series F),2008,51(9):1319-1339. 被引量:50
  • 9Chen Dali,Chen Yangquan,Xue Dingyu,et al.Adaptiveimage enhancement based on fractional differential mask[C]//2012 24th Chinese Control and Decision Conference(CCDC),2012:1043-1047.
  • 10Li Bo,Xie Wei.Adaptive fractional differential algorithmbased on Otsu standard[C]//2014 26th Chinese Controland Decision Conference(CCDC),2014:2020-2025.

二级参考文献101

共引文献346

同被引文献59

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部