期刊文献+

参数不确定的异时滞混沌系统的延时同步控制

Lag synchronization of adifferent time-delay chaotic systems with uncertain parameters
下载PDF
导出
摘要 构建一个新三维混沌系统,通过对系统非线性动力学特性进行分析,证实了系统的混沌特性并确定其混沌吸引子的存在,电路仿真说明了该混沌系统的物理可实现性。设计了该混沌系统的异时滞混沌系统,数值分析和电路仿真表明了异时滞混沌系统的物理可实现性。对一类参数不确定的时滞混沌系统的自适应延时同步进行讨论,以Lyapunov-Krasovskii泛函为理论基础,设计了时滞延时同步控制器,从理论上证明了当控制参数矩阵K满足K-n E为正定矩阵时,驱动系统与响应系统趋于同步,数值仿真表明了异时滞延时同步方法设计的普适性和有效性。 A novel three-dimensional chaotic system is constructed. The dynamic properties of the new system are investigated and it also shows that there exists chaotic behavior and chaotic attractor, and the circuit simulation results show physical realizability of the chaotic system. It designs a new different-lags chaotic system. Numerical analysis and circuit simulation results show physical realizability of the different-lags chaotic system. For a class of parameters uncertainty different-lags chaotic systems, it designs a time-delayed synchronization controllers and parameter adaptive laws. It proves that the drive system and the response system tend to be synchronized, when the control parameter matrix K satisfies the condition that K-nE is a positive definite matrix. Numerical simulation results show effectiveness of different-lags synchronization in time-delayed system method design.
作者 程鹏 张小红
出处 《计算机工程与应用》 CSCD 北大核心 2016年第14期254-260,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61363076) 江西省教育厅重点科技项目(No.GJJ13435) 江西省自然科学基金(No.2014BAB207020) 江西省研究生创新基金项目(No.YC2013-S197)
关键词 异时滞混沌系统 不确定参数 自适应延时同步控制 电路仿真 different-lags chaotic system parameters uncertainty adaptive lag synchronization control circuit simulation
  • 相关文献

参考文献15

  • 1Lorenz E N.Deterministic nonperiodic flow[J].Journal ofthe Atmospheric Sciences,1963,20(2):130-141.
  • 2章秀君,吴志强,方正.超混沌系统的构造方法研究[J].计算机工程与应用,2014,50(2):92-98. 被引量:9
  • 3李志军,曾以成.基于文氏振荡器的忆阻混沌电路[J].电子与信息学报,2014,36(1):88-93. 被引量:24
  • 4黄沄.一类多翼蝴蝶混沌吸引子及其电路实现[J].物理学报,2014,63(8):52-57. 被引量:11
  • 5Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(8):821-824.
  • 6Banerjee T,Biswas D,Sarkar B C.Complete and generalizedsynchronization of chaos and hyperchaos in a coupledfirst-order time-delayed system[J].Nonlinear Dynamics,2013,71(1/2):279-290.
  • 7Mahmoud E E.Lag synchronization of hyperchaotic complexnonlinear systems via passive control[J].Appl Math,2013,7(4):1429-1436.
  • 8Liu Xinzhi.Impulsive synchronization of chaotic systemssubject to time delay[J].Nonlinear Analysis,Theory,Methodsand Applications,2009,71(12):1320-1327.
  • 9Ma S J,Shen Q,Hou J.Modified projective synchronizationof stochastic fractional order chaotic systems with uncertainparameters[J].Nonlinear Dynamics,2013,73(1/2):93-100.
  • 10Rezaie B,Motlagh M R J.An adaptive delayed feedbackcontrol method for stabilizing chaotic time-delayed systems[J].Nonlinear Dynamics,2011,64(1/2):167-176.

二级参考文献84

  • 1王发强,刘崇新.Liu混沌系统的混沌分析及电路实验的研究[J].物理学报,2006,55(10):5061-5069. 被引量:38
  • 2王繁珍,齐国元,陈增强,袁著祉.一个四翼混沌吸引子[J].物理学报,2007,56(6):3137-3144. 被引量:46
  • 3王兴元,王明军.超混沌Lorenz系统[J].物理学报,2007,56(9):5136-5141. 被引量:87
  • 4Pikovsky A, Rosenblum M and Kurths J 2003 Synchronization: A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press).
  • 5Kapitaniak M, Czolczynski K, Perlikowski P, Stefanski A and Kapitaniak T 2012 Phys. Rep. 517 1.
  • 6Feng J, Yam P, Austin F and Xu C 2011 Zeitschrift fur Naturforschung A 66 6.
  • 7Lu J, Kurths J, Cao J, Mahdavi N and Huang C 2012 IEEE Trans. Neural Netw. Learning System 23 285.
  • 8Boccaletti S, Kurths J, Osipov G, Valladares D and Zhou C 2002 Phys. Rep. 366 1.
  • 9Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193.
  • 10Wang D, Zhong Y and Chen S 2008 Commun. Nonlinear Sci. Numer. Simul. 13 637.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部