期刊文献+

基于马尔科夫随机场的非参数化RGB-D场景理解

Nonparametric RGB-D scene parsing based on Markov random field model
下载PDF
导出
摘要 针对RGB-D场景下的场景理解问题,提出高效的基于标签传递机制的非参数化场景理解算法.该算法主要分为标签源构建、超像素双向匹配和标签传递三个步骤.与传统的参数化RGB-D场景理解方法相比,该算法不需要繁琐的训练,具有简单高效的特点.与传统的非参数化场景理解方法不同,该算法在系统的各个设计环节都有效利用了深度图提供的三维信息,在超像素匹配环节提出双向匹配机制,以减少特征误匹配;构建基于协同表示分类(CRC)的马尔科夫随机场(MRF),用Graph Cuts方法求出最优解,获得场景图像每个像素的语义标签.该算法分别在室内的NYU-V1数据集和室外的KITTI数据集上进行实验.实验结果表明,与现有算法相比,该算法取得了显著的性能提升,对室内、外场景均适用. An effective nonparametric method was proposed for RGB-D scene parsing. The method is basedupon the label transferring scheme, which includes label pool construction, bi-directional superpixel matchingand label transferring stages. Compared to traditional parametric RGB-D scene parsing methods, theapproach requires no tedious training stage, which makes it simple and efficient. In contrast to previousnonparametric techniques, our method not only incorporate geometric contexts at all the stages, but alsopropose a bi-directional scheme for superpixel matching in order to reduce mismatching. Then a collaborativerepresentation based classification (CRC) mechanism was built for Markov random field (MRF) , andparsing result was achieved through minimizing the energy function via Graph Cuts. The effectiveness ofthe approach was validated both on the indoor N Y U Depth V I dataset and the outdoor K ITTI dataset. Theapproach outperformed both state-of-the-art RGB-D parsing techniques and a classical nonparametric superparsingmethod. The algorithm can be applied to different scenarios, having a strong practical value.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第7期1322-1329,共8页 Journal of Zhejiang University:Engineering Science
关键词 场景理解 非参数化 RGB-D 马尔科夫随机场(MRF) scene parsing nonparametric RGB-D Markov random field (MRF)
  • 相关文献

参考文献2

二级参考文献24

  • 1MICHAEL B, ROBERT Z. Continuous 3D scan-matching with a spinning 2D Laser[C] //Proceedings of 1EEE International Conference on Robotics and Automation. New York: IEEE, 2009:4312 - 4319.
  • 2DORIT B, JAN E, KAI L, et al. Globally consistent 3D mapping with scan matching[J]. Journal of Robotics and Autonomous System, 2008, 56(2): 130- 142.
  • 3ANDREY S, MAARTEN UIJT D H. Three-dimensional navigation with scanning ladars: concept & initial verification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46( 1): 14 - 31.
  • 4GREGORY B, JACK C. Continuous motion, outdoor, 21/2D grid map generation using an inexpensive nodding 2-D laser range finder[C] //Proceedings of IEEE International Conference on Robotics and Automation. New York: IEEE, 2006:4240 - 4245.
  • 5EE H L, DAVID S. Multi-scale conditional random fields for oversegmented irregular 3D point clouds classification[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2008:1 - 7.
  • 6DENIS K, NORMAN H, JIANWEI Z. Multi sensor fusion of camera and 3D laser range finder for object recognition[C] //Praceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. New York: IEEE, 2010:236 - 241.
  • 7YUNSU B, YOUNGBAE H, IN S K. Accurate motion estimation and high-precision 3D reconstruction by sensor fusion[C]//Proceedings of IEEE International Conference on Robotics and Automation. New York: IEEE, 2007:4721 - 4726.
  • 8JI H J, KWANG H A, JUNG W K, et al. 3D environment reconstruction using modified color ICP algorithm by fusion of a camera and a 3D laser range finder[C]//Proceedings of lEEE International Conference on Intelligent Robots and Systems. New York: IEEE, 2009:3082 - 3088.
  • 9Hartley R,Zisserman A.计算机视觉中的多视图几何[M].韦穗,杨尚骏,译.合肥:安徽大学出版社,2002.
  • 10Medici P, Caraffi C, Cardaralli E, et al. Real-time road signs classification [ C ]//IEEE International Conference on Vehicular Electronics and Safety,2008:253 - 258.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部