期刊文献+

昆虫酚氧化酶抑制剂的活性预测模型 被引量:5

Prediction Model of the Activity of Insect Henoloxidase Inhibitors
原文传递
导出
摘要 采用电性拓扑状态指数(En)表征昆虫酚氧化酶(PO)抑制剂的分子结构,通过最佳变量子集回归的方法建立了57种PO抑制剂抑制活性(pIC50)的多元线性回归模型,非交叉相关系数和交叉相关系数分别为0.920和0.908,经Jackknife和变异膨胀因子(VIF)检验具有良好的稳定性和预测能力.该模型显示影响PO抑制剂抑制活性的主要因素是—OH,—O—和C=O等分子结构片段.以模型中的3个参数E13,E14,E16为人工神经网络输入层,设定3∶6∶1的网络结构构建人工神经网络的BP算法模型,相关系数达到0.988.结果表明,与多元线性回归模型相比,BP人工神经网络模型的相关性和预测能力均有较大的提高. Electrotopological state index (En)was used to describe the molecular structure of 57 insect henoloxi- dase inhibitors in this paper. The multiple liner regression(MLR) model was constructed by leaps-and-bounds regres- sion (LBR), and the traditional correlation coefficient and the cross-validation correlation coefficient are 0. 920 and 0. 908, respectively. The model exhibited excellent stability and predictability evaluated by Jackknife and variance infla- tion factors (VIF) method. The model shows that the dominant influencing factors of inhibited activity are the molecu- lar structure fragments: -OH, -O-, and C = O in PO inhibitors. The three structural parameters E13, El4 , E16 were used as the input neurons of artificial neural network,and a 3 : 6 : 1 network architecture is employed. A satis- fied model can be constructed with the back-propagation algorithm, the correlation coefficient R2 was 0. 988. The re- suits show that the back-propagation algorithm of artificial neural network model have higher correlation and predicta- bility than multiple liner regression model.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2016年第3期293-298,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(21272095)
关键词 电性拓扑状态指数 酚氧化酶抑制剂 人工神经网络 定量结构-活性相关 electrotopological state index insect henoloxidase inhibitor artificial neural network QSAR
  • 相关文献

参考文献8

二级参考文献94

共引文献195

同被引文献41

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部