期刊文献+

补气式等离子体射流发生器实验研究 被引量:6

Experimental research on air supplementing type plasma synthetic jet generator
原文传递
导出
摘要 提出一种补气式等离子体射流(ASPSJ)发生器,在常规火花放电式等离子体射流(PSJ)发生器腔体上连接单向阀,改善发生器吸气复原阶段的补气量和射流的连续性,以获得能量更高的合成射流。研究了在不同加载电参数下,不同类型单向阀对发生器最大射流速度的优化作用;通过正交实验法确定了补气式等离子体射流发生器的最佳工作电参数,以获得最高的合成射流速度。文中的等离子体射流发生器配以所选择的补气单向阀,最优加载电压频率为150 Hz,幅值为50kV,占空比为15%。实验结果表明,补气式等离子体射流发生器将最大射流速度提升20%以上,高射流速度的工作频带由单点扩展到100Hz,以期在应用于流动控制时获得更好的效果。研究成果为后续的主动流动控制的应用研究提供了指导。 An air supplementing type plasma synthetic jet(ASPSJ)generator has been developed in this paper.A one-way check valve,increasing the air refill supply at the recover stage,is connected to a typical spark discharge plasma synthetic jet(PSJ)generator.The ASPSJ improves jet flow continuity of typical PSJ and can get higher energy synthetic jet.The effect of different valves on the maximum average jet flow speed is researched with different electric parameters.The best electric parameters for the highest synthetic jet flow speed are obtained by orthogonal test.For the test ASPSJ generators,the best loading voltage frequency,amplitude,and duty cycle are 150 Hz,50kV and 15%.The results show that ASPSJ strengthens the maximum average jet flow speed by above 20%.The best actuation frequency is increased,and the actuation frequency bandwidth for maximum jet flow speed enlarges from one point to 100 Hz.Better airflow control effect can be expected by ASPSJ in wind tunnel tests.The research results provide guidance for further active flow control application.
出处 《航空学报》 EI CAS CSCD 北大核心 2016年第6期1713-1721,共9页 Acta Aeronautica et Astronautica Sinica
基金 航空科学基金(20141368007)~~
关键词 等离子体射流 单向阀 补气式发生器 射流特性 合成射流 plasma jet check valve air supplementing type generator jet flow characteristic synthetic jet
  • 相关文献

参考文献29

  • 1GROSSMAN K R, CYBYK B Z, VANWIE D M, et al. SparkJet actuators for flow control:AIAA-2003-0057[R]. Reston:AIAA, 2003.
  • 2GROSSMAN K R, CYBYK B Z, RIGLING M C, et al. Characterization of SparkJet actuators for flow control:AIAA-2004-0089[R]. Reston:AIAA, 2004.
  • 3CYBYK B Z, SIMON D H, LAND III H B. Experimental characterization of a supersonic flow control actuator:AIAA-2006-0478[R]. Reston:AIAA, 2006.
  • 4SARAH J H,BRUCE L H, CYBYK B, et al. Characterization of a high-speed flow control actuator using digital speckle tomography and PIV:AIAA-2008-3759[R]. Reston:AIAA, 2008.
  • 5HAACK S J, TAYLOR T M, CYBYK B Z, et al. Experimental estimation of SparkJet efficiency:AIAA-2011-3997[R]. Reston:AIAA, 2011.
  • 6POPKI S H, CYBYK B Z, LAND III H B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications:AIAA-2013-0322[R]. Reston:AIAA, 2013.
  • 7EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12):1-21.
  • 8NARAYANASWAMY V, SHIN J, CLEMENS N T, et al. Investigation of plasma-generated jets for supersonic flow control:AIAA-2008-0285[R]. Reston:AIAA, 2008.
  • 9NARAYANASWAMY V, CLEMENS N T, RAJA L L. Investigation of a pulsed-plasma jet for shock/boundary layer control:AIAA-2010-1089[R]. Reston:AIAA, 2010.
  • 10GREENE B R, CLEMENS N T, MICKA D. Control of shock boundary layer interaction using pulsed plasma jets:AIAA-2013-0405[R]. Reston:AIAA, 2013.

二级参考文献81

共引文献1067

同被引文献53

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部