期刊文献+

基于聚集密度的约束多目标进化算法

Constrained Multi-objective Evolutionary Algorithm Based on Crowding Density
下载PDF
导出
摘要 对基于群体聚类的约束多目标进化算法进行了改进,引入了聚集密度以度量群体中个体间的关系,保持种群的多样性。其基本思想为:首先将初始群体按多判据聚类方法分为适应度值不同的四类,然后计算类内群体中个体的聚集密度,根据适应度值和聚集密度定义一个偏序集,最后采用比例选择原则依次从偏序集中选择个体,更新精英集。通过数值实验用量化指标研究了改进算法的收敛性和分布性,结果表明:改进算法的收敛性与常规约束多目标进化算法相当,但分布性有了明显的提高。 The constrained multi- objective evolutionary algorithm based on group clustering was improved,and crowding- density was introduced to measure the relationship among individuals and maintain the diversity of population. The basic idea is that the initial population is divided into four groups with different fitness by multi- criterion clustering method,and the crowding- density of each group is calculated. A poset is defined according to the objective function value and crowding- density,and the individuals are selected from poset by the principle of proportion selection,then the elite set is updated. The convergence and distribution of improved algorithm were studied by means of numerical experiments,and the results showed that the convergence of improved algorithm is roughly equal to the conventional multi- objective evolutionary algorithm,but the distribution of improved algorithm is significantly improved.
作者 张丽丽 许峰
出处 《安徽理工大学学报(自然科学版)》 CAS 2016年第1期50-55,共6页 Journal of Anhui University of Science and Technology:Natural Science
基金 安徽省教育厅自然科学基金资助项目(2012kb236)
关键词 约束多目标进化算法 种群聚类 聚集密度 分布性 constrained multi-objective evolutionary algorithm group clustering crowding density distribution
  • 相关文献

参考文献10

  • 1SURRY P D, RADCLIFFE N J. The GOMOGA Meth-od :Constrained Optimisation by Multi - objective Ge-netic Algorithms [ J ] . Control and Cybernetics, 1997 ,26 :391 -412.
  • 2COELLO CAC. Treating Constraints as Objectives forSingle - Objective Evolutionary Optimization[ J]. Engi-neering Optimization,2000,32:275 -308.
  • 3COELLO CAC. Constraint - handling using an evolu-tionary multi 一 objective optimization technique[ J]. CivilEngineering and Environmental System,2000,17:319 -346.
  • 4张丽丽,许峰.基于群体分类的复杂约束多目标优化遗传算法[J].软件导刊,2009,8(12):38-41. 被引量:2
  • 5催逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2008:6.
  • 6郑金华.多目标进化算法及其应用[M].北京:科学出版社,2010.
  • 7VELDHUIZEN D A, LAMONT G B. Evolutionary com-putation and convergence to a Pareto front [ C ]// InJohn R Koza. Late breaking papers at the genetic pro-gramming 1998 conference, Stanford University, Cali-fornia. Stanford Bookstore:221 -228.
  • 8COELLO COELLO C A. Evolutionary algorithms for sol-ving muli 一 objective problems [ M ]. Kluwer Acedem-ic,2002:14-18.
  • 9E ZITZLER,K DEB,L THIELE. Comparison of multio-bective eveolutionary algorithms : Empirical results [ J ].Evolutionary Computation,2002,8(2) ; 173 - 195.
  • 10DEB KALYANMOY,SAMIR AGRAWAL, AMRITPRATAB,et al. Fast Elitist Non - Dominated SortingGenetic Algorithm for Multi - Objective Optimiztion :NSGA-II[C]//Kan GAL Report 200001. Indian In-stitute of Technooogy, Kanpur, India, 2000.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部