期刊文献+

CFD流动调整器性能评价方法研究 被引量:8

Research on performance evaluation method for CFD-based flow conditioner
下载PDF
导出
摘要 针对当前流动调整器性能评价依赖于具体管道系统,无法及时反馈、改进调整器结构等问题,提出一种基于CFD仿真技术的流动调整器性能评价方法。首先,建立流动调整器评价方法坐标系,并求解出各采样点坐标;然后,推导管道截面流速场充分发展性的判断依据,进而得出流动调整器整流效果评价指标;最后,采用CFD仿真技术对栅格式流动调整器进行验证实验。结果表明:提出的评价方法能快速、有效地对栅格式调整器下游流场充分发展性进行评判,有助于分析不同雷诺数下调整器性能的变化规律,并验证当5.84×10~6≤Re≤5.84×10~8,栅格式调整器下游不规则流场达到充分发展所需最少直管长度仅为不带调整器的0.5~0.6倍,对加速流动调整器设计、推动流体能源监测具有参考价值。 As evaluation of the performance of flow conditioner mostly depends on the specific pipeline system,feedback cannot be provided in a timely way for the purpose of structure design improvement. As such an CFD-based evaluation method for flow conditioner is suggested. First,the evaluation coordinates for flow conditioner is established and the coordinate values of each sampling point are solved out. Next, the basis for determining the development stage of velocity distribution of pipe cross-section is derived, by which the evaluation indexes of flow conditioner rectifier performance are obtained. At last,CFD simulation technology is applied for verifying grid format flow conditioner. The results showed that, the proposed evaluation method is effective in evaluating the grid format flow conditioner's performance quickly,helpful to analyze the function of flow conditioner's performance on Reynolds numbers. Where 5.84 ×10~6≤Re ≤5.84 ×10~8, the required straight pipe for velocity distribution downstream a grid format flow conditioner achieving full development is only 0.5-0.6 times by those without conditioner. It is of great significance to improve the flow conditioner design and to promote fluid energy monitoring.
出处 《中国测试》 CAS 北大核心 2016年第6期33-36,共4页 China Measurement & Test
基金 广州市质监局设备专项(2011SB028) 广州市质监局科技计划项目(2015KJ05)
关键词 流动调整器 评价方法 CFD仿真技术 流速场 flow conditioner evaluation method simulation technique of computational fluid dynamics velocity field
  • 相关文献

参考文献13

  • 1Measurement of gas by multipath ultrasonic meters:AGA XQ9801:2000[S].American Gas Association,2007.
  • 2ERDAL A.A numerical investigation of different parameters that affect the performance of a flow conditioner[J].Flow Measurement and Instrumentation,1998,8(2):93-102.
  • 3AHMADI A.Experimental study of a new flow conditioner on disturbed flow in orifice plate metering[J].Journal of Fluids Engineering,2009,131(5):051104.
  • 4RIVERA P F,REAL R C,MIRANDA T R,et al.Bifurcated SEN with fluid flow conditioners[J].Mathematical Problems in Engineering,2014:809526.
  • 5XING L,YEUNG H,SHEN J,et al.A new flow conditioner for mitigating severe slugging in pipeline/riser system[J].International Journal of Multiphase Flow,2013(51):65-72.
  • 6GORDEEV S,GR魻SCHEL F,HEINZEL V,et al.Numerical study of the flow conditioner for the IFMIF liquid lithium target[J].Fusion Engineering and Design,2014,89(7):1751-1757.
  • 7ZHENG D,ZHANG P,ZHANG T,et al.A method based on a novel flow pattern model for the flow adaptability study of ultrasonic flowmeter[J].Flow Measurement and Instrumentation,2013(29):25-31.
  • 8MANDARD E,KOUAM魪D,BATTAULT R,et al.Methodology for developing a high-precision ultrasound flow meter and fluid velocity profile reconstruction[J].Ultrasonics,Ferroelectrics and Frequency Control IEEE Transactions,2008,55(1):161-172.
  • 9ZHAO H,PENG L,STEPHANE S A,et al.CFD aided investigation of multipath ultrasonic gas flow meter performance under complex flow profile[J].Sensors Journal,2014,14(3):897-907.
  • 10ZHENG D,ZHANG P,XU T.Study of acoustic transducer protrusion and recess effects on ul trasonic flowmeter measurement by numerical simulation[J].Flow Measurement and Instrumentation,2011,22(5):488-493.

二级参考文献10

  • 1Transmission Measurement Committee. Measurement of gas by multipath ultrasonic meters [S]. Washington, D. C.. American Gas Association, 1998.
  • 2WALSH J T. A report of acoustic transit time accuracy field work performed in North America [C]//The 5th International Conference on Hydraulic Efficiency Measurements, Luceme, Switzerland, 2004: 21-29.
  • 3DRENTHEN J G, BOER G. The manufacturing of ultrasonic gas flow meters [J]. Flow Measurement and Instrumentation, 2001, 12.- 89-99.
  • 4WALSH J T. ASME PTC 18-2002 Hydraulic turbines and pump-turbines[S]. New York: ASME, 2002.
  • 5VOSER A. CFD-Calculations of the protrusion effect and impact on the acoustic discharge measurement accuracy[DB/OL]. (1996-06-28)[2010-08-30]. http: //www. ighem.org/Paper 1996/IGHEM 1996_35.pdf.
  • 6LOWELL F, SCHAFER S, WALSH J. Acoustic flowmeters in circular pipes: Acoustic transducer and conduit protrusion effects in discharge measurement [DB/OL]. (1998-08-20)[2010-08-30]. http://www.ighem.org/ Paper 1998flQHEM 1998_05.pdf.
  • 7RENALDAS R. Investigation of the flow velocity profile in a metering section of an invasive ultrasonic flowmeter [J]. Flow Measurement and Instrumentation, 2006, 17: 201-206.
  • 8徐英,于中伟,张涛,李刚.V形内锥流量计关键参数对流出系数的影响[J].机械工程学报,2008,44(12):105-111. 被引量:32
  • 9HOU Yulei YAO Jiantao ZENG Daxing CHEN Jie ZHAO Yongsheng.Development and Calibration of a Hyperstatic Six-component Force/Torque Sensor[J].Chinese Journal of Mechanical Engineering,2009,22(4):505-513. 被引量:9
  • 10熊光德.新型天然气超声波流量计量技术[J].天然气与石油,2002,20(2):57-61. 被引量:15

共引文献23

同被引文献43

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部