期刊文献+

不完全量测的变维容积卡尔曼滤波算法 被引量:3

Variable dimension cubature kalman filter algorithm with incomplete measurements
下载PDF
导出
摘要 针对不完全量测情况下的机动目标跟踪问题,提出一种变维容积卡尔曼滤波算法。首先,根据系统状态空间模型结构采用Kalman滤波-容积Kalman滤波(KF-CKF)为基本滤波器。其次,通过计算不完全量测的一阶矩和二阶统计矩,将不完全量测滤波问题转化为确定量测滤波问题,并导出相应的状态估计方法。最后,将其与变维滤波技术相结合,提出不完全量测下的变维CKF算法。计算机仿真实验表明:新算法具有很好的估计准确度,在机动目标跟踪应用中有着良好的应用前景。 Aiming at the problem of maneuvering target tracking with incomplete measurements,a variable dimension cubature Kalman filter algorithm is proposed. Firstly, the Kalman filter-cubature Kalman filter(KF-CKF) is adopted as a basic filter according to the state space model of tracking system. Secondly,by calculating the first and second-order statistical moments of the incomplete measurements, the state filtering with incomplete measurements is converted into the state estimating with complete measurements. Then, the corresponding state estimation method is derived. Finally, combining with variable dimension filter technology, a variable dimension CKF algorithm is presented. Computer simulations show that the new algorithm has good estimation accuracy and great application prospect of maneuvering target tracking.
作者 张虎龙
出处 《中国测试》 CAS 北大核心 2016年第6期112-116,共5页 China Measurement & Test
关键词 目标跟踪 变维滤波 容积卡尔曼滤波 不完全量测 target tracking variable dimension filter cubature Kalman filter incomplete measurement
  • 相关文献

参考文献12

  • 1BAR S Y,BIRMIWAL K.Variable dimension filter for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,1982,18(5):621-629.
  • 2LI X R,JILKOV V P.Survey of maneuvering target tracking Part I:dynamic models[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1333-1364.
  • 3鲁永杰,王思明.一种改进的运动目标跟踪方法[J].中国测试,2015,41(7):95-98. 被引量:6
  • 4LAN J,LI X R.Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix[J].IEEE Transactions on Signal Processing,2014,62(9):2450-2463.
  • 5JULIER S J,JEFFREY K U,DURRANTT H F.A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
  • 6ARASARATNAM I,HAYKIN S.Cubature kalman filters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
  • 7CLOUTIER J R,LIN C F,YANG C.Enhanced variable dimension filter for measuring target tracking[J].IEEE Transac tions on Aerospace and Electronic Systems,1993,29(3):786-796.
  • 8余小游,高亭亭,孙广富,唐小妹,倪少杰.卫星导航弱信号的变维卡尔曼滤波跟踪算法[J].国防科技大学学报,2015,37(3):56-60. 被引量:3
  • 9CABALLERO-魣GUILA R,HERMOSO-CARAZO A,LINARES-P魪éREZ J.Covariance-based estima tion algorithms in networked systems with mixed uncertainties in the observations[J].Signal Processing,2014,94(1):163-173.
  • 10WANG Z,YANG F,HO D W C,et al.Robust H∞filtering for stochastic time-delay system with missing measurements[J].IEEE Transac-tions on Signal Processing,2006,54(7):2579-2587.

二级参考文献32

  • 1余静,游志胜.自动目标识别与跟踪技术研究综述[J].计算机应用研究,2005,22(1):12-15. 被引量:38
  • 2Kim K H, Jee G I, Song J H, et al. The adaptive combined receiver tracking filter design for high dynamic situations [ C ]/! Proceedings of IEEE/ION Position Location and Navigation Symposium, 2008:203 - 209.
  • 3Lian P, Lachapelle G , Ma C L. Improving tracking performance of PLL in high dynamics applications [ C ]// Proceedings of the 2005 National Technical Meeting of the Institute of Navigation, 2005 : 1042 - 1052.
  • 4Almagbile A, Wang J L, Ding W D. Evaluating the performances of adaptive Kalman filter methods in GPS/INS integraton[ J]. Journal of Global Positioning Systems, 2010, 9(1) :33 -40.
  • 5La Scala B F, Bitmead R R. Design of an extended Kalman filter frequency tracker [ J ]. IEEE transactions on signal processing, 1996, 44 (3) :739 - 742.
  • 6Benkouider A M, Buvat J C, Cosmao J M, et al. Fault detection in semi-batch reactor using the EKF and statistical method [ J ]. Journal of Loss Prevention in the Process Industries, 2009, 22(2) :153 - 161.
  • 7亲永元,张洪钺,汪叔华,等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2012.
  • 8Kalman R E.A new approach to linear filtering and prediction problem[J].Journal of Basic Engineering,1960,82:34-35.
  • 9Bar-Shalom Y,Li Xiaorong,Kirubarajan T.Estimation with application to tracking and navigation[M].New York:Wiley,2001.
  • 10Daum F.Nonlinear filters:beyond the Kalman filter[J].IEEE Aerospace and Electronic Systems Magazine,2005,20(8):57-69.

共引文献11

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部