期刊文献+

水热法生长ZnO:Ga晶体过程及性能研究 被引量:2

Study of Hydrothermal Growth Process and Properties of ZnO:Ga Crystal
下载PDF
导出
摘要 采用水热法于36#水热反应釜中在四种条件下制备了ZnO:Ga晶体,对比了四种参数条件下晶体的生长速度及生长质量,深入分析了过快生长速度工艺下晶体产生微孔的原因。在D工艺条件下(4MKOH+0.25M LiOH+1.25mlH_2O_2,360-340℃)获得了生长速度适宜、高质量的ZnO:Ga单晶,晶体最大尺寸达到32.36mm×27.46mm×5.52mm。Ga:ZnO晶体的生长习性为形成一个单锥六棱具有显露p锥面即(101-1)和负极面(0001-)的柱体,而柱显露m面(101-0)发生退化。测试ZnO:Ga晶体的双晶摇摆曲线显示晶体具有优良的结晶质量,其中+c[002]晶面的FWHM为11arc sec,而-c晶面的结晶质量略低于+c方向,FWHM为17arc sec。较之纯ZnO晶体,Ga:ZnO晶体在750nm处透过率曲线开始下降,其在大于750nm波长的可见及红外光区的特异吸收性能将具有广泛的应用前景。 ZnO:Ga crystals were prepared by hydrothermal method in 36 # hydrothermal reaction kettle under four different conditions.The deep analysis of the cause of microvoids in crystals under excessively fast growing rate process has been done through comparison of the growth rate and quality of the crystals under the four parameter conditions.ZnO:Ga crystals of appropriate growth rate and high quality with a maximum size of 32.36mm×24.84mm×5.40 mm have been grown under the D condition(4MKOH +0.25 M LiOH+1.25mlH_2O_2,360-340℃).The growth habit of Ga:ZnO crystal is to form a single-cone hexagonal prism with visible p pyramidal face(101-1)and cathode face(0001-)while the visible m face(101-0)degenerates.Double crystal rocking curve for ZnO:Ga crystal test indicates an excellent crystallization quality,of which the FWHM for+c[002]face is 11 arc sec.The crystallization quality for-c face is slightly lower than that of+c,with 17 arc sec for FWHM.Compared to pure ZnO crystal,the transmittance curve of Ga:ZnO crystal starts to decline at 750 nm.The visibleness of Ga:ZnO crystal above 750 nm wavelength and its distinctive absorption capability will have an extensive application prospect.
出处 《超硬材料工程》 CAS 2016年第3期57-62,共6页 Superhard Material Engineering
基金 广西自然科学基金(2013GXNSFBA019262) 中国科学院技术开发项目(2012EG115007) 广西科学研究与技术开发计划(桂科攻1598008-9)
关键词 ZNO:GA 水热法 晶体 过程 性能 ZnO:Ga hydrothermal process properties
  • 相关文献

参考文献30

  • 1DM Bagnall, YF Chen, MY Shen , et al. RT excitonic stimula- ted emission from zinc oxide epilayers grown by plasma assisted MBE. Journal of Crystal Growth. 1998. 605 : 184.
  • 2I). C. Look. Recent advances in ZnO materials and devices. Mate- rials Science and Engineering:B. 2001,80(1-3) :383-387.
  • 3C. Klingshirn. ZnO from basics towards applications. Physica Stalus Solidi, 2007, 244(9) :3027-3073.
  • 4A. George, S.K. Sharma, S. Chawla,et al. Qureshi. Struc- tural, optical and photoluminescence propertiesof Zn 1-x Ce x O (x =0, 0.05 and 0. 1) nanoparticles by sol - gel method an- nealed under Ar atmosphere. Alloys Compd. 2011, 509 : 5942 - 5946.
  • 5S.S. Shinde, Prakash S. Patil, R. S. Gaikwad,et al. Influences in high quality zinc oxide films and their photoelectrochemical performance. Alloys Compd,2010,503(2) =416-421.
  • 6Sousan Rasouli. Mahdi Sail. Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments. International Journal of Materials Research, 2012,103 ( 3 ) .. 352- 357.
  • 7S. Kristmamoorthy, T. Bei, E. Zoumakis,et al. Morphological and binding properties of interleukin-6 on thin ZnO films grown on (1 0 0) silicon substrates for biosensor applications, Biosens and Bioelectron,2006,22 (5) 707 - 714.
  • 8LORENZ M o JOHNE R, NOCHM UTH T ,et al. Fast, highefficiency, and hom ogeneous room- tern perature cath- odolum inescence of ZnO scintillator thin films on sapphire. Ap- plied Physics Letters,2006,89(24) .- 1-3.
  • 9NEALJ S,BOATNER I A ,GII ES N C,et al. Corn parative investigation of the perform ance of ZnO-based scintillators for use as dparticle de teetors[J]. Nuclear Instruments and Methods in Physics Research A , 2006,568 = 803-809.
  • 10SIMPSON P J,TJOSSEM R,HUNT A W ,et al. Superfast tim- ing performance from ZnO scintillators. Nuclear Instruments and Methods in Physics Research A ,2003,505:82-84.

二级参考文献18

  • 1徐甲强,王焕新,张建荣,沈嘉年.微波水解法制备纳米ZnO及其气敏特性研究[J].无机材料学报,2004,19(6):1441-1445. 被引量:36
  • 2Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science,2001, 291:1947 - 1949.
  • 3Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nano-wire arrays[J]. Science ,2006,312:242- 246.
  • 4Koh W, Lin M, Tan C, et al. Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat[J]. Phys Chem B,2004,108:11419 - 11425.
  • 5Yan H Q, He R, Pham J ,et al. Morphogenesis of one-dimensional ZnO nano- and microcrystals[J]. Adv Mater,2003,15:402 -405.
  • 6Wang W W, Zhu Y J. Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt[J]. Inorg Chem Commun ,2004,7: 1003 - 1005.
  • 7Chen Y F, Kim M, Lian G D, et al. Side reactions in controlling the quality, yield, and stability of high quality colloidal nano-crystals[J]. J Am Chem Soc,2005,127: 13331 - 13337.
  • 8Wang J M, Gao L. Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and their photoluminescence properties [J]. J Cryst Growth ,2004,262: 290-294.
  • 9Jiang C L, Zhang W Q, Zou G F, et al. Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO[J]. J Phys Chem B, 2005,109(4) :1361 - 1363.
  • 10Xu H Y, Wang H, Zhang Y C, et al. Hydrothermal synthesis of zinc oxide powders with controllable morphology [J]. Ceramics International, 2004,30:93 - 97.

共引文献8

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部