期刊文献+

PEM水电解用多层钛网析氧阳极制备及性能研究 被引量:5

Synthesis and performance of multilayered titanium mesh oxygen evolution anode in polymer exchange membrane water electrolysis
下载PDF
导出
摘要 以钛网为扩散层基体,氯铱酸为前驱体,采用浸渍-热解法制备了IrO_2/Ti析氧阳极,进一步采用热压法制备膜电极.综合扫描电镜、循环伏安、交流阻抗、单池性能曲线测试及阳极寿命强化测试,研究了不同层数钛网析氧阳极对性能及寿命的影响.结果表明:与单层钛网析氧阳极比较,采用双层钛网析氧阳极,积分电荷由84.27 m C/cm2增至153.12 m C/cm2,电极电化学反应阻抗由7.38Ω·cm2降低至3.03Ω·cm2,单池性能得到提升.寿命强化测试表明,采用双层钛网析氧阳极在稳定性及寿命方面有显著提升,稳定运行时间由30 h增加到了53 h. Using titanium mesh as the diffusion layer substrate, chloroiridic acid as the precursor, oxygen evolution anode of IrO2/Ti was prepared by the thermal decomposition method, and then the membrane electrode assembly was prepared via the hot-press method. The effects of performance and life caused by different layer of titanium mesh oxygen evolution anode was investigated by scanning electron microscopy, cyclic voltammogram, alternating current impedance, cell performance curve test and anode accelerated life test. The results show that the integral charge increased from 84.27 mC/cm2 to 153.12 mC/cm2 and the electrochemical reaction impedance was decreased from 7.38 ohm·cm2 to 3.03 ohm·cm2 both in the single layer Ti mesh and double layer Ti mesh with the improved cell performance. Accelerated life tests show that it has a significant boost in stability and life from single to double layer. The life of the titanium mesh oxygen evolution anode increased from 30 h to 53 h.
出处 《有色金属科学与工程》 CAS 2016年第3期1-5,共5页 Nonferrous Metals Science and Engineering
基金 国家自然科学基金资助项目(91010002 50874008)
关键词 质子交换膜水电解 热解 IrO2/Ti 多层钛网析氧阳极 寿命强化测试 proton exchange membrane water electrolysis thermal decomposition IrO2/Ti multilayer titanium mesh oxygen evolution anode accelerated life test
  • 相关文献

参考文献22

  • 1GRIGORIEV S A, POREMBSKY V I, FATEEV V N. Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International Journal of Hydrogen Energy, 2006, 31(2): 171-175.
  • 2GRIGORIEV S A. High pressure PEM water electrolysis and corresponding safety issues[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2721-2728.
  • 3王海燕,刘志祥,毛宗强,岳琪.SPE电解池催化剂载体的研究[J].化工新型材料,2009,37(1):32-33. 被引量:3
  • 4MENG N, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy Conversion & Management,2008, 49(10): 2748-2756.
  • 5GHOSH C R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Che- mical Reviews, 2012, 112(4): 2373-2433.
  • 6LEE J, JEONG B, OCON J D. Oxygen electroeatalysis in chemical energy conversion and storage technologies[J]. Current Applied Ph- ysics, 2013, 13(2): 309-321.
  • 7赵培,木士春,潘牧,袁润章.PEMFC组件CCM制备方法的评述[J].电池,2005,35(6):480-482. 被引量:7
  • 8FIERRO S, KAPAIk A, COMNINELLIS C. Electrochemical compa- rison between IrO2 prepared by thermal treatment of iridium metal and IrO2prepared by thermal decomposition of HIrC16 solution[J]. Electrochemistry Communications, 2010, 12(1): 172-174.
  • 9XU J, MIAO R, ZHAO T, et al. A novel catalyst layer with hydrophilic-hydrophobic meshwork and pore structure for solid polymer electrolyte water electrolysis[J]. Electrochemistry Comm- unications, 2011, 13(5):437-439.
  • 10LIU G, XU J, JIANG J, et al. Nanosphere-structured composites consisting of Cs-substituted phosphotungstates and antimony doped tin oxides as catalyst supports for proton exchange memb- rane liquid water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1914-1923.

二级参考文献26

  • 1Yim Sungdae, Lee Wonyong, YoonYounggi, et al. Optimization of bifunctional electrocatalyst for PEM unitized regenerative fuel cell [J]. Electrochimica Acta,2004, 50: 713-718.
  • 2Yim Sungdae, Park Gugon, SohnYoungjun, et al. Optimization of PtIr electrocatalyst for PEM URFC[J].Int JHydrogen Energy, 2005, 30: 1345-1350.
  • 3W ittstadt U, Wagner E, Jungmann T. Membrane electrode assemblies forunitised regenerative polymer electrolyte fuel cells [J]. J Power Sources, 2005, 145:555-562.
  • 4Pettersson J, Ramsey B, Harrison D. A review of the latest developments in electrodes for unitized regenerative polymer electrolyte fuel cells[J]. J Power Sources, 2006, 157: 28-34.
  • 5Song Shidong, Zhang Huamin, Ma Xiaoping, et al. Bifunetional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell [J]. Electrochemistry Communications, 2006, 8: 399-405.
  • 6Trasatti S. Electrocatalysis: Understanding the success of DSA [J].Electrochimica Acta. 2000,45:2377-2385.
  • 7Chen Gaoying , Bare Simon R , Mallouk ThomasE. Develop - ment of supported bifunctional electrocatalysts for unitized regenerative fuel cells [J]. J Electrochemical Society, 2002, 149 (8) : A1092-A1099.
  • 8Shao Zhigang, Yi Baolian , HanMing. Bifunctional electrodes with a thin catalyst layer for‘unitized ’ proton exchangemem brane regenerative fuel cell [J].J Power Sources, 1999, 79 82-85.
  • 9Rasten Egi, Hagen Georg, Tunold Reidar. Electrocatalysis in water electrolysis with solid polymer electrolyt[J].ElectrochimicaActa, 2003, 48:3945-3952.
  • 10Ioroi T, Kitazawa N, Yasuda K, et al. IrO2 deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells [J]. J Applied Electrochemistry, 2001,31:1179-1183.

共引文献8

同被引文献18

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部