期刊文献+

基于加权平均PIP的Linux线程调度方法研究 被引量:1

Linux thread scheduling method based on weighted average PIP
下载PDF
导出
摘要 在Linux系统中,优先级反转问题可能会造成系统崩溃。优先级反转使得高优先级任务的执行时间无法预测,增加了实时系统的不确定性,而优先级继承协议(PIP)很好地解决优先级反转问题。文章在对PIP协议进行分析的基础上,利用加权平均的思想,形成了加权平均PIP算法。它可以用来进行线程调度,改善系统的实时性。 In the Linux system, the problem of priority inversion may cause systems to crash. The execution time of the high priority task cannot be predicted because of priority inversion, and the uncertainty of the real-time system is increased. PIP(priority inheritance protocol) is a good solution to the priority inversion problem. In this paper, the idea of weighted average value, with PIP, forms a weighted average PIP algorithm, which can be used for thread scheduling, improving the real-time performance of the system.
作者 张治元
出处 《湖南邮电职业技术学院学报》 2016年第2期26-28,共3页 Journal of Hunan Post and Telecommunication College
基金 湖南省教育科学规划课题 课题批准号:xjk012czj016
关键词 加权平均值 PIP 线程调度 优先级反转 weighted average value PIP thread scheduling priority inversion
  • 相关文献

参考文献6

  • 1L. Sha, R. Rajkumar, J.P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-Time Synchronization, IEEE Trans. Computers, 1990, pp. 1175-1185.
  • 2李伊.基于认知无线传感器网络的能效优化频谱检测机制研究[J].湖南邮电职业技术学院学报,2016,15(1):10-14. 被引量:3
  • 3李冠楠,李家春.基于杂交遗传算法的多处理器硬实时容错调度算法[J/OL].计算机应用研究,2016(9).http://www.cnki.net/kcms/detail/51.1196.TP.20151028.1121.080.html.
  • 4Zarandi H R, Mottaghi M H. DFTS: a dynamic fault-tolerant scheduling for real-time tasks in muhicore processors[J]. Microprocessors & Microsystems, 2014(1): 88-97.
  • 5Pathan R M. Fault-tolerant and real-time scheduling for mixed-criticality systems[J]. Real-Time Systems, 2014(4): 509-547.
  • 6孔凡凤,朱永平.基于Zigbee技术无线传感器网络平台的设计与实现[J].湖南邮电职业技术学院学报,2015,14(2):16-19. 被引量:3

二级参考文献12

  • 1杨凤,李强,朱灵波.一种无线传感器网络跨层能量模型及能耗计算[J].计算机工程与应用,2008,44(2):172-176. 被引量:6
  • 2A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok. The Global Footprint of Mobile Communications: The Ecological and Economic Perspective[J].IEEE Communications Magazine, vol. 49, no. 8, pp. 55-62, 2011.
  • 3O. B. Akan, O. Karli, and O. Ergul. Cognitive radio sensor net works[J]. IEEE Network, vol. 23, no. 4, pp. 34-40, 2009.
  • 4G. P. Joshi, S. Y. Nam, and S. W. Kim. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends[J]. Sensors, vol. 13, no. 9, pp. 11196- 11228, 2013.
  • 5E. Hossain, V. Bhargava. Cognitive wireless communication networks[M]. Berlin: Springer, 2007.
  • 6G. Ganesan. Y. Li, Cooperative spectrum sensing in cognitive radio, part II: Muhiuser networks[J]. IEEE Transactions on Wireless Communications, vol. 6, no. 6, pp. 2214-2222, 2007.
  • 7I. F. Akyildiz, B. F. Lo, R. Balakrishnan. Cooperative spectrum sensing in cognitive radio networks: A survey[J]. Physical Communication, vol. 4, no. 1, pp. 40-62, 2011.
  • 8S. Maleki, A. Pandharipande, and G. Leus. Energy-efficient distributed spectrum sensing for cognitive sensor networks[J]. IEEE Sensors Journal, vol. 11, no. 3, pp. 565-573, 2011.
  • 9S. Maleki, G. Leus. Censored truncated sequential spectrum sensing for cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, vol. 31, no. 3, pp. 364- 378, 2013.
  • 10S. Maleki, G. Leus, S. Chatzinotas, and B. Ottersten. To AND or OR: How Shall the Fusion Center Rule in Energy- Constrained Cognitive Radio Networks[J]. IEEE International Conference on Communications (ICC), 2014.

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部