期刊文献+

基于摄动理论的纵向弹道修正方法改进 被引量:4

Improvement of Longitudinal Trajectory-correction Method Based on Perturbation Theory
下载PDF
导出
摘要 舵机纵向修正能力随启控时刻的推后通常有先逐渐增大后逐渐减小的变化趋势。为提高纵向修正能力,从理论上分析了纵向修正能力变化趋势的形成原因,推导了基于摄动理论的纵向修正作用判别因子,并提出了以该判别因子为基础的纵向弹道修正改进方法。该方法通过在判别因子为正时设置常规的舵控相位,判别因子为负时设置与常规相反的舵控相位,使舵机在整个弹道上的修正作用不出现矛盾,从而扩展纵向修正时间、提高纵向修正能力。以装配固定鸭舵式二维修正引信的某型制导迫击炮弹为例进行了仿真,结果表明,该方法可将各射角的舵机纵向修正能力提高0~252%。通过蒙特卡洛模拟打靶验证了该方法应用于制导控制的可行性与有效性。 The longitudinal trajectory-correction capability usually varies in a non-monotonic way with the increase of the control start time .The reason of the change trend of the longitudinal trajectory correction capability was analyzed theoretically ,and the discriminant function of trajectory -correction based on perturbation theory was deduced.The optimized method of canards control in longitudinal plane was put forward based on the discriminant function of trajectory correction .The conventional canards control phase was set when the discriminant function of trajectory correction was positive ;the optimized canards control phase was set when the discriminant function of trajectory correction was negative .This method can make sure that the trajectory correction direction is same , so the longitudinal trajectory correction capability is increased greatly .The simulation of one guided mortar projectile with fixed canards was carried out .The simulation result shows that this method can increase the longitudinal trajectory -correction capability with different elevation angles by0-252%.The effectiveness and adaptability of this method on application was testified by Monte-Carlo simulation.
出处 《弹道学报》 CSCD 北大核心 2016年第2期29-34,共6页 Journal of Ballistics
关键词 纵向弹道修正 摄动理论 固定鸭舵 longitudinal trajectory correction perturbation theory fixed canards
  • 相关文献

参考文献9

  • 1BIASS E H, BRAYBROOK R. Guided mortar bombs [ J ]. Armada International ,2002,26 (6) :56-57.
  • 2GANDER T J. Mortar ammunition update [ J ]. Armada International, 2003,27 ( 2 ) : 18-20.
  • 3ROGERS J, COSTELLO M. Design of a roll stabilized mortar projectile with reciprocating canards [ J ]. Journal of Guidance, Control, and Dynamics,2010,33 (4) : 1 026-1 034.
  • 4FRESCONI F. Guidance and control of a projectile with reduced sensor and actuator requirements [ J ]. Journal of Guidance, Control, and Dynamics,2011,34 (6) : 1 757-17 66.
  • 5THEODOULIS S, GASSMANN V, WERNERT P. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[ J]. Journal of Guidance, Control, and Dynamics,2013, 36(2) :517-531.
  • 6PAVlC M, PAVKOVIC B, MANDIC S, et al. Pulse-frequency modulated guidance laws for a mortar missile with a pulse jet control mechanism [ J ]. Aeronautical Journal, 2015,119 ( 1213 ) : 389 -405.
  • 7GAO Min, ZHANG Yong-wei, YANG Suo-chang. Trajectory correction capability modeling of the guided projectile with impulse thrusters [ J ]. Engineering Letters,2016,24 ( 1 ) : 11 - 18.
  • 8QIAN Xing-fang, LIN Rui-xiong, ZHAO Ya-nan. Missile dynamics of flight [ M ]. Beijing : Beijing Institute of Technology Press, 2000 : 25-77. (in Chinese).
  • 9CHEN Shi-nian. Control system design [ M ]. Beijing: China Astronautic Publishing House, 1996 : 161-175. ( in Chinese).

同被引文献31

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部