期刊文献+

混合粒子流滤波的非线性系统参数估计算法

A Nonlinear System Parameter's Estimation Algorithm Based on Hybrid Particle Flow Filter
下载PDF
导出
摘要 为了提高强环境噪声下非线性系统估计性能,基于粒子流滤波对非线性系统估计能力强的特点,文中首先利用粒子流滤波粗估计状态向量;然后,利用卡尔曼滤波平滑由强环境噪声所导致的状态向量估计误差;最后,得到混合粒子流滤波算法。对转移方程为线性而测量方程为非线性的系统估计仿真实验表明:文中算法的参数估计精度高于普通粒子流滤波算法和粒子滤波算法,计算复杂度和普通粒子流滤波算法相当且低于粒子滤波算法。 In order to improve estimation performance of the nonlinear system under strong environmental noise, the state vector is roughly estimated by particle flow filter firstly since it is good for handling nonlinear system estimation problem. Then the state vector's estimation error, which is caused by the strong environment noise, is smoothed by a Kalman filter. Finally the hybrid particle flow filter is gotten. The results of simulation for the system estimation consisting of linear transfer equation and nonlinear measurement equation show that the estimation accuracy of the proposed algorithm is higher than that of the standard particle flow filter and the particle filter, computational complexity of proposed algorithm is the same as standard particle flow filter and is lower than that of the particle filter.
作者 赵知劲 吴棫
出处 《现代雷达》 CSCD 北大核心 2016年第6期45-49,共5页 Modern Radar
关键词 粒子流滤波 卡尔曼滤波 粒子滤波 计算复杂度 估计精度 particle flow filter Kalman filter particle fiher computational complexity estimation accuracy
  • 相关文献

参考文献12

  • 1DAUM F. Nonlinear filters: beyond the Kalman filter[ J ]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8) :57-69.
  • 2SIMON D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches [ M ]. Hoboken : John Wiley & Sons, 2006.
  • 3康健,司锡才,芮国胜.基于贝叶斯原理的粒子滤波技术概述[J].现代雷达,2004,26(1):34-36. 被引量:31
  • 4DAUM F, HUANG J. Particle degeneracy: root cause and solution[ C ]// International Society for Optics and Photon- ics, Defense, Security, and Sensing. Florida: SPIE Press, 2011: 1-11.
  • 5DAUM F, HUANG J. Particle flow for nonlinear filters, Bayes- ian decisions and transport[ C]/! 2003 16th International Con-ference on Information Fusion ( FUSION ). Istanbul : IEEE Press, 2013:1072-1079.
  • 6WHITEHEAD G W. Elements of homotopy theory[ M]. Massa- chusetts: Springer, 2012.
  • 7RISKEN H. The Fokker-Planck equation: methods of solu- tion and application [ M ]. Berlin : Springer, 1996.
  • 8DAUM F, HUANG J. Exact particle flow for nonlinear filters: seventeen dubious solutions to a first order linear underdeter- mined PDE[C]//2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers. Pa- cific Grove, CA: IEEE Press, 2010: 64-71.
  • 9DAUM F, HUANG J. Particle flow for nonlinear filters [C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague: IEEE Press, 2011 : 5920-5923.
  • 10DAUM F E. Exact finite-dimensional nonlinear filters [ J ]. IEEE Transactions on Automatic Control, 1986, 31 (7): 616-622.

二级参考文献11

  • 1[1]Y Bar-Shalom, X R Li. Estimation and Tracking: Principles,Techniques and Software.Artech House,Boston,MA,1993
  • 2[2]M.Pachter,P R Chandler.Universal Linearization Concept for Extended Kalman Filters.IEEE Trans.on Aerospace and Electronic Systems, 1993, 29(3): 946~961
  • 3[3]T L Song,J L Speyer.A Stochastic Analysis of a Modified Gain Extended Kalman Filter with Application to Estimation with Bearing-Only Measurements.IEEE Trans.on Automatic Control, 1985, 30(10):940~949
  • 4[4]D L Alspach, H W Sorenson. Nonlinear Bayesian Estimation Using Gaussian Sum Approximation.IEEE Trans.,1972, AC-17: 439~447
  • 5[5]J Carpenter,P Clifford,P Fearnhead. Improved Particle Filter for Nonlinear Problems.IEE proc.Radar,Sonar,Navig., 1999,146(1)
  • 6[6]B P Carlin,N G Polson,D S Stoffer.A Monte Carlo Approach to Nonnormal and Nonlinear State-space Modeling. JASA., 1992,87(418):493~500
  • 7[7]A Doucet,N Gordon,V Krishnamurthy. Particle Filters for State Estimation of Jump Markov Linear Systems.IEEE Trans.on Signal Processing, 2001, 49: 613~ 624
  • 8Zhan Ronghui Xin Qin Wan Jianwei.Modified unscented particle filter for nonlinear Bayesian tracking[J].Journal of Systems Engineering and Electronics,2008,19(1):7-14. 被引量:14
  • 9刘先省,胡振涛,金勇,杨一平.基于粒子优化的多模型粒子滤波算法[J].电子学报,2010,38(2):301-306. 被引量:21
  • 10吴孙勇,廖桂生,杨志伟.基于粒子滤波的宽带信号波达方向估计[J].电子学报,2011,39(6):1353-1357. 被引量:4

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部