期刊文献+

氧化铝颗粒的溶解控制机制及其临界特征 被引量:6

Control mechanisms and critical characteristics in dissolution of alumina particles
下载PDF
导出
摘要 在铝电解工艺中,氧化铝在电解质中的溶解同时受传热与传质的控制。通过建立氧化铝颗粒溶解的传热控制模型、传质控制模型以及收缩核模型,基于Open FOAM开源软件平台,采用自编程的方法开发氧化铝溶解求解模块,对氧化铝颗粒在两种控制机制下的溶解进行数值模拟。结果表明:在传质机制控制下,其颗粒的质量溶解速率及其速率的变化梯度均随粒径的减小而降低;在传热机制控制下,其颗粒质量溶解速率也随颗粒粒径的减小而减小,但速率梯度变化不大。为了区分氧化铝溶解过程中传热与传质两种控制机制中哪种机制占主导作用,提出临界直径的定义及其判定。研究得出氧化铝颗粒临界直径为560μm,小于560μm的氧化铝颗粒溶解受传质机制的控制,大于560μm的氧化铝颗粒溶解受传热机制的控制。 In the aluminum electrolytic process, alumina was dissolved in the electrolyte under the control of both heat and mass transfer mechanism. Heat transfer control model, mass transfer control model and the shrinking core model of alumina dissolution were established, Based on the OpenFOAM open source software platform, alumina dissolution solution module was set up by the custom code. Numerical simulations of the dissolution of alumina particles under the two mechanisms were conducted. The results show that under the control of mass transfer mechanism, the mass dissolution rate and the varying gradient of the mass dissolution rate of alumina particles reduce with decreasing the particle size. Under the control of heat transfer mechanism, the mass dissolution rate decreases with decreasing the particle size, while the varying gradient of the mass dissolution rate shows little change. In order to distinguish the dominance of the heat transfer or mass transfer control mechanism, the definition and judgement of the critical diameter were put forward. Considering the dissolution process of alumina particle is governed by mass transfer as well as heat transfer mechanism together, the critical diameter is 560 μm. The dissolution of alumina particles with the size of less than 560μm is governed by mass transfer mechanism, while the dissolution of alumina particles with the size of more than 560μm is under the control of the heat transfer mechanism.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2016年第2期455-464,共10页 The Chinese Journal of Nonferrous Metals
基金 国家高技术研究发展计划资助项目(2010AA065201)~~
关键词 铝电解 氧化铝溶解 传质控制机制 传热控制机制 临界直径 aluminum reduction alumina dissolution mass transfer mechanism heat transfer mechanism critical diameter
  • 相关文献

参考文献20

  • 1YANG You-jian, Gao Bing-liang, WANG Zhao-wen, SHI Zhong-ning, HU Xian-wei. Effect of physiochemical properties and bath chemistry on alumina dissolution rate in cryolite electrolyte[J]. JOM, 2015, 67(5): 973-983.
  • 2徐君莉,石忠宁,高炳亮,邱竹贤.氧化铝在熔融冰晶石中的溶解[J].东北大学学报(自然科学版),2003,24(9):832-834. 被引量:17
  • 3刘世英,石忠宁,邱竹贤,任必军,曹全红.铝电解槽中沉淀的形成及分析[J].轻金属,2006(7):34-36. 被引量:10
  • 4ROLSETH S, HOVLAND R, KOBBELTVEDT O. Alumina agglomeration and dissolution in cryolitic melts[C]// MANNWEILER U. Light Metals1994. San Francisco, CA: TMS (The Minerals, Metals &Materials Society), 1994:351-357.
  • 5WELCH B J, KUSCHEL G I. Crust and alumina powder dissolution in aluminum smelting electrolytes[J]. JOM, 2007, 59(5): 50-54.
  • 6HAVERKAMP R G, WELCH B J. Modelling the dissolution of alumina powder in cryolite[J]. Chemical Engineering and Processing: Process Intensification, 1998, 37(2): 177-187.
  • 7徐宁,杨振海,邱竹贤,程涛.氧化铝在冰晶石熔体中溶解的动力学模型[J].东北大学学报(自然科学版),1999,20(3):315-318. 被引量:11
  • 8POI N W, HAVERKAMP R G, KUBLER S. Thermal effects associated with alumina feeding in aluminium reduction cells[C]//MANNWEILER U. Light Metals1994. San Francisco, CA: TMS (The Minerals, Metals &Materials Society), 1994: 219-225.
  • 9VERHAEGHE F, BLANPAIN B, WOLLANTS P. Dissolution of a solid sphere in a multicomponent liquid in a cubic enclosure[J]. Modelling and Simulation in Materials Science and Engineering. 2008, 16(4): 45007.
  • 10LILLEBUEN B O R, BUGGE M, HOIE H. Alumina dissolution and current efficiency in Hall-Heroult cells[C]// BEARNE G. Light Metals2009. San Francisco, CA: TMS (The Minerals, Metals & Materials Society), 2009: 389-394.

二级参考文献100

  • 1刘世英,石忠宁,邱竹贤,任必军,曹全红.铝电解槽中沉淀的形成及分析[J].轻金属,2006(7):34-36. 被引量:10
  • 2夏小霞,周乃君,崔大光,包生重.156kA铝电解槽内电解质两相流动的数值模拟[J].中国有色金属学报,2006,16(11):1988-1992. 被引量:7
  • 3Bagshw A N. Effect of operating condition on the dissolution of primary and secondary alumina powders in electrolysis[J]. Light Metals, 1985:649 - 659.
  • 4Fortin S, Gerhardt M, Gesing A J. Physical modeling of bubble behavior and gas release from aluminium reduction cell[J]. Light Metals, 1985:721-741.
  • 5Thonstad J, Solheim A, Rolseth S,et al. The dissolution of alumina in cryolite melts[J]. Light Metals, 1988:655 -661.
  • 6Shekher R, Evans J W. Physical modeling studies of electrolytes flow due to gas evolution and some aspects of bubble behavior in advanced hall cells [J]. Met Trans B,1994,25(8):333 - 349.
  • 7Liu X L. Visualization of alumina dissolution in cryolite melts[J]. Light Metals, 1994:358- 364.
  • 8Kobbeltvedt O, Rolseth S, Thonstad J. On the mechanisms of alumina dissolution with relevance to point feeding aluminum cell[J]. Light Metals, 1996:320-325.
  • 9Qiu Z X, Yang Z H, Dissolution of alumina in molten cryolite (a video recording study)[J]. Light Metals, 1999:350 - 355.
  • 10Jomar Thonstad, Liu Y X. The effect of an alumina layer at the electrolyte/alumina interface a laboratory study [J]. Light Metals, 1981:303-312.

共引文献46

同被引文献41

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部