期刊文献+

Dislocation mechanism for dynamic recrystallization in twin-roll casting Mg–5.51Zn–0.49Zr magnesium alloy during hot compression at different strain rates 被引量:1

不同应变率下热压缩双辊轧制Mg-5.51Zn-0.49Zr合金动态再结晶的位错机制(英文)
下载PDF
导出
摘要 Dislocation mechanism operating in dynamic recrystallization (DRX) during hot compression of Mg-5.51Zn-0.49Zr alloy was investigated by X-ray diffraction, optical microscopy and transmission electron microscopy. The results showed that the continuous DRX occurred at a low strain rate of 1×10^-3s^-1, which was associated with the operation of the single gliding dislocation climbing. At the intermediate strain rate of 1×10^-2s^-1, the continuous DRX was associated with the climbing of the gliding dislocation array as deformed at an elevated temperature of 350 ℃, and in contrast, the discontinuous DRX was observed and associated with the bulging of subgrain boundaries as the deformation temperature was raised to 400 ℃. The continuous DRX was associated with the climbing of the leading dislocation ahead of pile-ups, and resultant rearrangement of misorientated flat dislocation pile-ups as the strain rate was increased to 1×100s^-1. It is suggested that the mechanism predominating the dislocation climbing was changed from the vacancy migration to the stress acting on the leading dislocation ahead of the pile-up as the strain rate was gradually increased. 通过X射线衍射仪、光学显微镜和透射电镜研究Mg-5.51Zn-0.49Zr镁合金在热压缩实验中动态再结晶的位错机制。结果表明,当应变速率为1×10^(-3) s^(-1)时,由于位错攀移沿单一方向滑动,合金出现连续动态再结晶;当热压缩温度达到350°C、应变速率为1×10^(-2) s^(-1)时,由于位错发生滑移和攀移,合金出现连续动态再结晶;当热压缩温度达到400°C时,由于亚晶界弓出,合金出现不连续动态再结晶;当应变速率为1×100 s^(-1)时,合金出现连续动态再结晶是由于先导位错在堆积前发生攀移,导致位错在堆积过程中重新排列,形成位错差。一般来说,当应变速率增加时,位错攀移的主要影响机制由空位迁移转变为堆积前先导位错的压应力作用。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期378-389,共12页 中国有色金属学报(英文版)
基金 the financial support presented by Brain Pool Program of Korea and Core Technology R&D Program for the Development of High Performance Eco-friendly Structural Materials funded by the Korean Ministry of Commerce,Industry and Energy(Project No.10020072) 2011 Program of Ministry of Education of China
关键词 magnesium alloy DISLOCATION MECHANISM dynamic recrystallization 镁合金 位错 机制 动态再结晶
  • 相关文献

参考文献46

  • 1SPIGARELLI S, MEHTEDI M E, CABIBBO M, EVANGELISTA E, KANEKO J, JAGER A, GARTNEROVA V. Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy [J]. Materials Science and Engineering A, 2007,462: 197-201.
  • 2EDDAHBI M, del VALLE J A, P'EREZ-PRADO M T, RUANO O A. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling [J]. Materials Science and Engineering A, 2005, 410-411 : 308-311.
  • 3KIM W J, PARK J D, KIM W Y. Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy [J]. Journal of Alloys and Compounds, 2008, 460: 289-293.
  • 4CERRI E, LEO P, de MARCO P P. Hot compression behavior of the AZ91 magnesium alloy produced by high pressure die casting [J]. Journal of Materials Processing Technology, 2007, 189: 97-106.
  • 5BARNETT M R. Twinning and the ductility of magnesium alloys. Part I: "Tension" twins [J] Materials Science and Engineering A, 2007, 464:1 7.
  • 6BARNETT M R. Twinning and the ductility of magnesium alloys. Part II: "Contraction" twins [J]. Materials Science and Engineering A, 2007. 464: 8-16.
  • 7WALDE T, RIEDEL H. Modeling texture evolution during hot rolling of magnesium alloy AZ31 [J]. Materials Science and Engineering A, 2007, 443: 277-284.
  • 8PROUST G, TOME' C N, KASCHNER G C. Modeling texture, twinning and hardening evolution during deformation of hexagonal materials [J]. Acta Materialia, 2007, 55:2137-2148.
  • 9JIANG L, JONAS J J, MISHRA R K, LUO A A, SACHDEV A K, GODET S. Twinning mad texture development in two Mg alloys subjected to loading along three different strain paths [J]. Acta Materialia, 2007 55:3899-3910.
  • 10COTTAM R, ROBSON J, LORIMER G, DAVIS B. Dynamic recrystallization of Mg and Mg-Y alloys: Crystallographic texture development [J]. Materials Science and Engineering A, 2008, 485: 375 382.

二级参考文献100

  • 1CHINO Y, MABUCHI M. Plastic-forming processes for magnesium alloy [J]. Japan lnst of Light Metals, 2001, 51(5): 498-502.
  • 2X1NG J, YANG X, MIUNA H, SAKAI T. Supereplasticity of magnesium alloy AZ31 processed by severe plastic deformation [J]. Mater Trans, 2007, 48(6): 1406-1411.
  • 3WATANABE H, FUKUSUMI M. Mechanical properties and texture of a superplastically deformed AZ31 magnesium alloy [J]. Mater Sci EngA, 2008, 477(3):153-161.
  • 4ION S E, HUMPHREYS F J, WHITE S H. Dynamic recrystallization and the development of microstructure during high temperature deformation of magnesium [J]. Acta Metall, 1982, 30(10): 1909- 1919.
  • 5KAIBYSHEV R, SITDIKOV O. On bulging mechanism of dynamic recrystallization [C]// MCNELLEY T D. Recrystallization and Related Phenomena (REX'96). Monterey: MIAS, 1997:287 294.
  • 6GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Mater, 2001, 49(4): 1199-1207.
  • 7SITDIKOV O, KAIBYSHEV K, SAKAI T. Dynamic recrystallization based on twinning in coarse-grained magenisium [J]. Materials Science Forum, 2003, 419/422(1): 521-526.
  • 8HIGASHIDA K, TAKAMURA J, NARITA N. The formation of deformation bands in fcc crystals [J]. Mater Sci Eng, 1986, 81(8): 239-258.
  • 9HUMPHREYS F J, HATHERLY M. Recrystallization and related annealing phenomena [M]. Oxford: Pergamon, 1995.
  • 10YANG X, MIUNA H, SAKAI T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation [J]. Mater Trans, 2003, 44(1): 197 203.

共引文献43

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部