期刊文献+

基于三维人脸数据的性别分类

Gender Categorization Based on 3D Face Data
下载PDF
导出
摘要 提出了一种新颖的基于视觉词典直方图的三维人脸特征,并将其应用到三维人脸数据中实现了人脸性别分类。视觉词典直方图特征提取分为两个阶段,训练阶段和识别阶段。在训练阶段中,先是通过Gabor滤波器提取出三维人脸数据中的局部纹理特性,组成滤波响应向量集合,然后通过聚类算法得到向量中心,即三维人脸视觉词汇;在识别阶段中,将滤波响应向量与三维人脸视觉词汇进行映射,得出对应的视觉词汇直方图向量,即基于视觉词典直方图的人脸特征。在获取人脸特征后,采用SVM分类器实现性别分类。实验表明,该特征在性别分类中可以获得比其他广泛采用的表象特征(如Gabor滤波器、LBP等)更好的分类性能,充分证明了该特征实现了三维人脸描述有效性和鲁棒性的统一。 The article proposes a novel histogram feature based on 3D facial visual codes, and successfully applies this algorithm to 3D face gender categorization. Extracting facial histogram feature based on visual codes can be divided into 2 stages, training stage and categorization stage, In the training stage, first the local texture characteristics in 3D facial data are extracted using Gabor filters to a form filter response vector set, and then vector centers, clustering algorithm. In the categorization stage, the namely, 3D facial visual codes are obtained filter response vectors are mapped to the visual through codes, and the mapping results can be represented as a histogram feature vector. Gender classification is achieved by using SVM classifier based on the obtained histogram feature vector. Experimental results illustrate that our proposed visual code histogram feature achieves better categorization performance than the widely used appearance-based facial features, such as Gabor filter and LBP features, which demonstrates its effectiveness and robustness for 3D face gender categorization.
出处 《黄山学院学报》 2016年第3期7-10,共4页 Journal of Huangshan University
基金 安徽省高等学校自然科学研究重点项目(KJ2016A449) 安徽省高校质量工程教学研究项目(2015jyxm757)
关键词 三维人脸 视觉词典 性别分类 3D face data visual codes gender categorization
  • 相关文献

参考文献9

  • 1K. Bowyer, K. Chang, and P. Flynn. A survey of ap- proaches and challenges in 3d and multi-modal 3d+2d face recognition. [J].Computer Vision and Image Under- standing (CVIU), 2006 (1):1-15.
  • 2R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi- fication,Second Edition. [M].John Wiley & Sons,Inc., 2001:3-17.
  • 3B. Moghaddam and M. H. Yang. Learning gender withsupport faces. [J].IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2002 3(7):1-5.
  • 4S. Baluja and H. Rowley. Boosting sex identi-cation per- formance.[J].Intemational Journal of Computer Vision (I- JCV),2007(1):ll 1-119.
  • 5C. J. Liu and H. Wechsler. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.[J].IEEE Transactions on Image Processing (TIP),2002, 11 (4):467-476.
  • 6T. Ojala, P. Matti, and M. Topi. Multiresolution gray- scale and rotation invariant texture classification with lo- cal binary pattems.[J].IEEE Transactions on Pattern Anal- ysis and Machine Intelligence (PAMI), 2002,24 (7) : 971 - 987.
  • 7P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek. Overview of the face recognition grand challenge. [J].In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2005(1):947-954.
  • 8T.Maurer,D. Guigonis,I. Maslov,B. Pesenti,A. Tsaregorodtsev, D. West,and G. Medioni. Performance of geometrix activeid TM 3d face recognition engine on the frgc data. [J].In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2005(3):145-154.
  • 9徐英武.多模态人脸识别系统研究[J].池州学院学报,2015,29(3):32-34. 被引量:1

二级参考文献10

  • 1W. Zhao, R. Chellappa, and A. Rosenfeld. Face recognition: a literature survey[J]. ACM Computing Surveys,2003 (35):399-458.
  • 2K. Bowyer, K. Chang, and P. Flynn. A survey of approaches and challenges in 3d and multi-modal 3d + 2d face recognition[J]. Computer Vision and Image Understanding, 2006,101 ( 1 ) : 1-15.
  • 3C. Beumier and M. Acheroy. Face verification from 3d and grey level clues[J]. Pattern Recognition Letters, 2001(12) : 1321-1329.
  • 4Y. Wang, C. Chua, and Y. Ho. Facial feature detection and face recognition from 2d and 3d images[J].Pattern Recognition Letters, 2002(8) : 191-1202.
  • 5T. Papatheodorou and D. Rueckert. Evaluation of automatic 4d face recognition using surface and texture registration[C]//Sixth IEEE International Conference on Automatic Face and Gesture Recog- nition, 2004: 321-326.
  • 6X. Lu and A. K. Jain. Integrating range and texture informa- tion for 3d face recognition[C]//Seventh IEEE Workshops on Applica- tion of Computer Vision,2005:156-163.
  • 7M. Turk and A. Pentland. Eigenfaces for recognition[J]. J. Cognitive Neuroscience, 1991 ( 3 ) : 71-86.
  • 8J. Kittler, M. Hater, R. P. W. Duin, and J. Matas. On combin- ing classifiers[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998:226-239.
  • 9C. Xu, Y. Wang, T. Tan, and L. Quan. Automatic 3d face rec- ognition combining global geometric features with local shape variation information[C]//IEEE International Conference on Automatic Face and gesture Recognition, 2004.
  • 10A. K. Jain, K. Nandakumar, and A. Ross. Score normaliza- tion in multimodal biometric systems[J]. Pattern Recognition, 2005 (12): 2270-2285.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部