期刊文献+

基于布谷鸟搜索算法的认知车载网络频谱分配方法 被引量:2

Spectrum allocation based on cuckoo search algorithm in cognitive vehicular network
下载PDF
导出
摘要 针对认知车载网络频谱分配中网络吞吐量低的问题,提出一种基于布谷鸟搜索算法的频谱分配方法。该方法考虑了认知车载网络中授权频段可用时长的差异性,将最大化网络吞吐量转化为求最大化可用时长内认知车载用户成功完成的总数据量,建立目标函数,并将频谱分配变量映射为布谷鸟鸟巢位置,采用布谷鸟搜索算法求解。数值分析表明,基于布谷鸟搜索算法的频谱分配方法所获得的网络吞吐量高于基于遗传算法的频谱分配。 To improve the network throughput in spectrum allocation of cognitive vehicular network,a spectrum allocation method based on cuckoo search algorithm is proposed.The method has considered the diversity of authorized spectrum available time,formulates the network throughput maximization as total data maximization problem of cognitive vehicular users successfully transmit in the time slot to establish objective function,and uses cuckoo search algorithm to solve it by mapping the spectrum allocation variables to the position of cuckoo's nest.Numerical simulation shows that compared with the genetic algorithm,the network throughput is improved.
出处 《桂林电子科技大学学报》 2016年第3期173-177,共5页 Journal of Guilin University of Electronic Technology
基金 广西自然科学基金重点项目(2011GXNSFD018028) 广西自然科学基金(2013GXNSFFA019004)
关键词 认知车载网络 布谷鸟搜索算法 频谱分配 吞吐量 cognitive vehicular network cuckoo search algorithm spectrum allocation throughput
  • 相关文献

参考文献4

二级参考文献36

  • 1于海斌,曾鹏,王忠锋,梁英,尚志军.分布式无线传感器网络通信协议研究[J].通信学报,2004,25(10):102-110. 被引量:119
  • 2HAYKIN $. Cognitive radio: brain-empowered wireless communications [ J ]. IEEE Journal on Selected Areas in Communications, 2005, 23 ( 2 ) : 201-220.
  • 3STINE J A. Spectrum management: the kilter application of ad hoc and mesh networking [J]. Proc. IEEE DySPAN 2005, 2005:184-193.
  • 4SIMEONE J G, BAR-ENSS Y, et al. Cooperation and Cognitive Radio IEEE [J]. International Conference on Communications, 2007 : 6511-6515.
  • 5STANO JEV S, I , SAVAZZI S, et al. Spectrum leasing to cooperation secondary AD hoc network [J]. Selected Areas in Communications, IEEE, 2008, 1(26) :203-213.
  • 6NOLAN K. E, RONDEAU T W , SUTTON P. Demonstration and analyses of collaboration, coexistence, and interoperability of cognitive Radio platform [J]. IEEE Consumer Communications and Networking Conference, 2007: 1149-1153.
  • 7ZHU J, LIU K J R, Multi-stage pricing game for collusion-resistant dynamic spectrum allocation [J]. Selected Areas in Communications, IEEE, 2008, 1(26) : 182-192.
  • 8LEE J, KIM YOUNG M. Weighted-cooperative spectrum sensing scheme using clustering incognitive radio systems[C]. IEEE ICACT 2008, 2008: 786-790.
  • 9Raychaudhuria D.Cognitive Radio Technology:From Distributed Spectrum Coordination to Adaptive Network Collaboration[J].Pervasive and Mobile Computing,2008,(4):278-302.
  • 10PENG Chun-yi,ZHENG Hai-tao,ZHAO B Y.Utilization and Fairuess in Spectrum Assignment for Opportunistic Spectrum Access[J].Mobile Network Application,2006,(11):555-576.

共引文献11

同被引文献21

  • 1刘伯权,刘喜,吴涛.基于共轭先验分布的深受弯构件受剪承载力概率模型分析[J].工程力学,2015,32(4):169-177. 被引量:8
  • 2朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 3中华人民共和国国家质量监督检验检疫总局.测量不确定度评定与表示:JJFl059.1-2012[S].北京:中国质检出版社,2012.
  • 4ELSTER C. Bayesian uncertainty analysis compared with the application of the GUM and its supplements [ J ]. Metrologia, 2014,51 (4) :189 -200.
  • 5DESIMONI E, BRUNETTI B. Uncertainty of measurement and conformity assessment: a review [ J ]. Analytical and bio analytical chemistry, 2011,400 ( 6 ) : 1729 - 1741.
  • 6BATTISTELLI L, CHIODO E, LAURIA D. A new methodology for uncertainty evaluation in risk assessment: Bayesian estimation of a safety index based upon extreme values [ C ]//International Symposium on Power Electronics, Electrical Drives, Automation & Motion. IEEE ,2008:439 - 444.
  • 7IUCULANO G, NIELSEN L,ZANOBINI A, et al. The principle of maximum entropy applied in the evaluation of the measurement uncertainty [ J ] . IEEE transactions on instrumentation & measurement,2007,56 ( 3 ) :717 - 722.
  • 8ZHANG X M, ZHANG H Z. Uncertainty analysis for pump test based on maximum entropy and Monte Carlo method[C]//Proceedings of 2010 IEEE the 17th International Conference on Industrial Engineering and Engineering Management. 2010 : 1628 - 1631.
  • 9FANG X, SONG M. Estimation of maximum-entropy distribution based on genetic algorithms in evaluation of the measurement uncertainty [ C ]//Intelligent Systems (GCIS) ,2010 Second WRI Global Congress on IEEE. 2010 : 292 - 297.
  • 10SAID A B, SHAHZAD M K,ZAMAI E,et al. Experts' knowledge renewal and maintenance actions effectiveness in high- mix low-volume industries ,using Bayesian approach[ J]. Cognition technology & work ,2016,18 (1) :193 -213.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部