期刊文献+

基于粒子滤波的NAR模型状态过程估计 被引量:1

Estimation of NAR model state based on particle filter
下载PDF
导出
摘要 针对状态转移方程是非线性自回归(NAR)模型的一类动态系统最优估计问题,提出利用粒子滤波(PF)方法估计NAR模型状态。该方法用正交最小二乘法建立NAR模型,得到系统状态方程和量测方程,利用PF方法估计NAR模型状态,减少因参数估计带来的状态估计误差。仿真实验表明,基于PF方法估计NAR模型状态是可行的,且比传统的NAR模型估计精度更高。 For a class of dynamic system optimal estimation problem that the state transition equation is nonlinear auto-regressive(NAR)model,aparticle filter method is proposed to estimate NAR model state.Firstly NAR model is established by using the orthogonal least squares,and the state equation and measurement equation of the system are established according to NAR model.And then NAR model state is estimated by the particle filter method to reduce the state estimation error.Simulation experiments show that the estimation of NAR model state based on particle filter is feasible,and the estimation precision is higher than the traditional NAR model.
出处 《桂林电子科技大学学报》 2016年第3期178-181,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61261033 41201479 61062003 61162007) 广西自然科学基金(2013GXNSFBA019270)
关键词 粒子滤波 状态空间模型 NAR模型 正交最小二乘法 particle filter state-space model NAR model orthogonal least squares
  • 相关文献

参考文献10

  • 1LIU Hui,TIAN Hongqi,LI Yanfei.Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J].Applied Energy,2012,98(10):415-424.
  • 2LOUKA P.Improvements in wind speed forecasting for wind power prediction purposes using Kalman filtering[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(12):2348-2362.
  • 3CAO Qing,EWING B T,THOMPSON M A.Forecasting wind speed with recurrent neural networks[J].European Journal of Operational Research,2012,221(1):148-154.
  • 4GUO Zhenhai,WU Jie,LU Haiyan.A case study on a hybrid wind speed forecasting method using BP neural network[J].Knowledge Based Systems,2011,24(7):1048-1056.
  • 5YASSIN I M,ZABIDI A,SALLEH M K M,et al.Malaysian tourism interest forecasting using nonlinear autoregressive(NAR)model[C]//20131EEE 3rd International Conference on System Engineering and Technology,2013:32-36.
  • 6KADIR S N,TAHIR N M,YASSIN I M,et.al.Malaysian tourism interest forecasting using nonlinear auto-regressive moving average(NARMA)model[C]//2014IEEE Symposium on Wireless Technology and Applications,2014:193-198.
  • 7施招云,万德钧.一类适用于陀螺随机漂移预报的非线性模型[J].中国惯性技术学报,1993,1(1):37-41. 被引量:3
  • 8URTEAGA I,DJURIC P M.Estimation of ARMA state processes by particle filtering[C]//2014IEEE International Conference on Acoustics,Speech and Signal Processing,2014:8033-8037.
  • 9LOPES H,TSAY R S.Particle filters and bayesian inference In financial econometrics[J].Journal of Forecasting,2011,30(1):168-209.
  • 10张诗桂,朱立新,赵义正.粒子滤波算法研究现状与发展趋势[J].电子信息对抗技术,2010,25(5):8-16. 被引量:6

二级参考文献52

共引文献7

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部