期刊文献+

基于时间序列分析的血液供应量预测 被引量:5

Forecast blood supply based on time series analysis
下载PDF
导出
摘要 目的基于时间序列分析预测血液供应量。方法以北京市红十字血液中心的10年血液供应量为基础,应用SPSS统计软件,采用时间序列分析方法,寻找合适的预测供血量的分析方法和优化模型参数。结果时间序列分析中的自回归滑动平均混合模型(ARIMA)比较适合进行血液供应量的预测,模型参数优化结果 ARIMA(1.1.1)具有较好的拟合效果。拟合值与观察值吻合程度较高。结论可应用时间序列分析方法中的ARIMA对血液供应量进行预测,对于策略的制定、科学管理和理性决策有一定的帮助。 Objective To predict the future trend of blood supply based on 10-year data of Beijing Red Cross Blood Center.Methods The database was analyzed by using SPSS statistical software.Data sequence was stabilized by using the process of differencing.Suitable prediction analysis method and the optimal model parameters were explored and identified.Results In time series analysis autoregressive moving average mixing model(ARIMA)was suitable for prediction of blood supply,ARIMA(1.1.1)parameters of the model was fit for the purpose of analysis.Fit value was better agreed with the observed values.Conclusion The model proposed in this paper could predict the trend of blood supply effectively,which could be helpful to policy makers,scientific management and rational decision-making services.
出处 《北京医学》 CAS 2016年第6期606-609,共4页 Beijing Medical Journal
关键词 血库 血液供应 预测 时间序列分析 blood bank blood supply forecast time series analysis
  • 相关文献

参考文献4

  • 1Critchfield GC, Connelly DP, Ziehwein MS. Automatic prediction of platelet utilization by time series analysis in a large tertiary care hospital[J]. Am J Clin Pathol, 1985, 84:627-631.
  • 2Pereira A. Performance of time-series methods in forecasting the demand for red blood cell transfusion[J]. Transfusion, 2004, 44:739- 746.
  • 3Earnest A, Chen MI, Ng D, et al. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the num- ber of beds occupied during a SARS outbreak in a tertiary hospital in Singapore[J]. BMC Health Serv Res, 2005, 11:36.
  • 4Doherty ST, Greaves SP. Time-series analysis of continuously moni- tored blood glucose: the impacts of geographic and daily lifestyle factors[J]. J Diabetes Res, 2015, 2015:804341.

同被引文献48

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部