期刊文献+

基于听觉分流机制的瞬态信号提取方法

Method for Transient Signal Extraction Based on the Mechanism of Auditory Stream Segregation
下载PDF
导出
摘要 以听觉分流机制为基础,提出一种瞬态信号自动提取方法。首先,对信号进行带通滤波和相位调整;其次,获得各滤波信号二次包络的极大、极小值及其对应时间,基于两种极值幅值和时间,计算得到同步性和瞬态性线索;最后,综合这两类线索信息,在时频平面中筛选出与瞬态成分相对应的时频段,并最终完成瞬态成分的波形生成与修整。通过数值仿真和实测信号检验,所提方法能够在较强的背景信号下有效提取出瞬态信号,对瞬态信号的初始时间具有较高的识别精度,具有一定的实际应用潜力。 A transient vibration signal is generally induced by impact between parts in a mechanical system,so transient signal extraction is significant for the condition judgment and fault diagnosis of the machine.Considering that the human auditory system possesses the ability to segregate a novel burst signal stream in a multi-source sound field,a method for extracting the transient vibration signal component is proposed based on the mechanism of auditory stream segregation.First,band-pass filtering is used to obtain the time-frequency distribution of the analyzed signal.Then,the phase is adjusted using inverted filtering in every filter channel.Based on the maximum and minimal value of twice envelope of each filter signal,two cues(synchronism and mutation degree)are calculated to be used as index to screen out the timefrequency segments that are relevant to the transient signal component.Finally,these time-frequency segments are added together to generate the waveform of the transient signal.Numerical simulation and the analysis of signals measured from the gear box show that the proposed method can extract a transient signal component from a powerful background signal with high accuracy of onset time,and has utilization potential.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2016年第3期451-458,600-601,共8页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51275080)
关键词 故障诊断 信号分离 听觉模型 特征提取 faults diagnosis signal segregation transient signal auditory model feature extraction
  • 相关文献

参考文献19

  • 1蔡改改,刘海洋,黄伟国,朱忠奎.自适应谱峭度滤波方法及其振动信号检测应用[J].振动.测试与诊断,2014,34(2):212-217. 被引量:8
  • 2Cai Gaigai, Liu Haiyang, Huang Weiguo, et al. Adaptive spectral kurtosis filtering and its application for detection of vibration signal[J]. Journal of Vibration, Measurement& Diagnosis, 2014,34 (2) : 212-217. (in Chinese).
  • 3Zhu Zhongkui, Yan Ruqing, Luo Liheng, et al. Detection of signal transients based on wavelet and statisties for machine fault diagnosis [J]. Mechanical Systerns and Signal Proeessing, 2009,23(4):1076-1097.
  • 4Angrisani L, Daponte P , D'Apuzzo M. A method for the automatic detection and measurement of transients. part I: the measurement method[J]. Measurement, 1999, 25(1): 19-30.
  • 5Angrisani L, Daponte P , D'Apuzzo M. A method for the automatic detection and measurement of transients. part I: applications[J].Measurement, 2009,25 (1) :31-40.
  • 6Antoni J. The spectral kurtosis: a useful tool for characterizing non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
  • 7Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007,21(1):108-127.
  • 8Liu Haiyang, Huang Weiguo, Wang Shibin, et al. Adaptive spectral kurtosis filtering based on Morlet wavetet and its application for signal transients detection[J]. Signal Processing, 2014,96 : 118-124.
  • 9Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007,21(6) :2616-2633.
  • 10Aurelie B C,Constanze M,Robert T K. Load effects in auditory selective attention., evidence for distinct facilitation and inhibition mechanisms [J]. Neuro Image, 2010,50(1) :277-284.

二级参考文献24

  • 1石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 2YANG X, WANG K, SHAMMA S A. Auditory representations of acoustic signals[J]. IEEE Transactions on Information Theory, 1992, 38(2): 824-839.
  • 3SERAJUL H, ROBERTO T, ANTHONY Z. A temporal auditory model with adaptation for automatic speech recognition[C]// ICASSP'2007, Honolulu, U.S.A, April 15-20, 2007:1 141-1 144.
  • 4LISA G H, LESLIE M C. Using computational auditory models to predict simultaneous masking data: model comparison[J]. IEEETransactions on Biomedical Engineering, 1999, 46(12): 1 432- 1 440.
  • 5WRIGLEY S N, BROWN G J. A computational model of auditory selective attention[J]. IEEE Transactions on Neural Networks, 2004, 15(5): 1 151 1 163.
  • 6VAN DER KOUWE A W, WANG D L, BROWN G J. A comparison of auditory and blind separation techniques for speech segregation[J]. 1EEE Transactions on Speech and Audio Processing, 2001, 9(3): 189 195.
  • 7CHU W, CHAMPAGNE B. A simplified early auditory model with application in speech/music classification[C]//IEEE CCECE/ CCGEI, Ottawa, Canada, May 7-10, 2006:775 -778.
  • 8WANG K, SHAMMA S. Self-normalization and noise-robustness in early auditory representations[J]. IEEE Transactions on Speech andAudio Processing, 1994, 2(3): 421-435.
  • 9CHU W, CHAMPAGNE B. A noise-robust FFT-based auditory spectrum with application in audio classification[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(1): 137 150.
  • 10CHEN Shixiong, GONG Qin, JIN Huijun. Gammatone filter bank to simulate the characteristics of the human basilar membrane[J]. Journal of Tsinghua Univ. (Sci &Tech), 2008, 46(6): 33-38. (in Chinese).

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部