期刊文献+

Heisenberg型群上的仿积算子

Paraproducts on Heisenberg Type Groups
原文传递
导出
摘要 首先给出了Heisenberg型群上一类仿积算子的定义,研究了该算子的L^2→L^2有界性.其次探讨了Heisenberg型群上的Calderon-Zygmund算子,包括该算子的L^p→L^p有界性,L^1→L^(1,∞)有界性以及H^1→L^1有界性.最后证明了仿积算子也是Calderon-Zygmund算子,同时还证明了仿积算子的一些其它重要性质. We define a class of paraproducts on Heisenberg type groups. We prove they have L2 boundedness. We also study CalderSn-Zygmund operators, and prove they are bounded operators which map L^p to L^p, L^1 to L^1,∞ and H^1 to L^1. Then we prove the paraproducts are also CalderSn-Zygmund operators and they also satisfy two important properties that Pb= b and P^1 = 0 in the sense of distribution.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第4期433-450,共18页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11471040) 中央高校基本科研业务费专项资金(2014KJJCA10)
关键词 Heisenberg型群 仿积 CALDERON-ZYGMUND算子 Heisenberg-type groups paraproducts Calderon-Zygmund operators
  • 相关文献

参考文献26

  • 1Auscher P., Hofmann S., Muscalu C., et al., Carleson measures, trees, extrapolation, and T(b) theorems, Publ Mat., 2002, 46: 257-325.
  • 2Bahouri H., Gallagher I., Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat., Iberoamericana, 2001, 17(1): 69-105.
  • 3Bahouri H., G@rard P., Xu C. J., Espaces de Besov et estimations de Strichartz g@neralis6es sur le groupe de Heisenberg, J. Anal. Math., 2000, 82: 93-118.
  • 4Bahouri H., Kammerer C. F., Gallagher I., Phase-space analysis and pseudodifferential calculus on the Heisenberg group, AsMrisque, 2012, No. 342:vi+127 pp.
  • 5Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monogr. Math., Springer-Verlag, Berlin, 2007.
  • 6Bony J. M., Calcul symbolique et propogation des singularites pour les equations aux derivees partielles non lineaires, Ann. Sci. Ec. Norm. Super., 1981, 14(4): 209-246.
  • 7Coifman R. R., Meyer Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 1975, 212: 315-331.
  • 8Coifman R. R., Meyer Y., Au dela des operateurs pseudo-differentiels, Asterisque, 1978, 57.
  • 9Coifman R. R., Meyer Y., Commutateurs d'integrales singulieres et operateurs multilineaires, Ann. Inst. Grenoble, 1978, 28: 177-202.
  • 10Faraut J., Harzallah K., Deux Cours d'analyse harmonique, Ecole d'Ete d'analyse harmonique de Tunis, Progress in Mathematics, Birkhauser, 1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部