摘要
设u=Tri(A,M,B)是含单位元I的三角代数,()={()_n}_(n∈N)是u上一簇线性映射.本文证明了:如果对任意U,V∈u且UV=VU=I,有()_n(UV+VU)=∑_(i+j=n)(()_i(U)_(()_j)(V)+()_i(V)()_j(U)),则()={()_n}_(n∈N)是u上高阶导子.作为应用,得到了套代数上Jordan高阶导子的一个刻画.
Let U=Tri(A,M,B)be the triangular algebra with identity I, and let φ={φN}n∈N be a family of linear maps on U. We show that if φ={φN}n∈N satisfying φn(UV+VU)=∑i+j=n(φi(U)φi(V)+φi(V)φj(U))) whenever U, ∈ E with UV = VU = I, then it is a higher derivation. As its application, we give a different characterization of Jordan higher derivations on nest algebras.
出处
《数学学报(中文版)》
CSCD
北大核心
2016年第4期461-468,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11471199)
陕西师范大学研究生培养创新基金(2015CXB007)