期刊文献+

三角代数上Jordan高阶导子的刻画 被引量:2

Characterization of Jordan Higher Derivations on Triangular Algebras
原文传递
导出
摘要 设u=Tri(A,M,B)是含单位元I的三角代数,()={()_n}_(n∈N)是u上一簇线性映射.本文证明了:如果对任意U,V∈u且UV=VU=I,有()_n(UV+VU)=∑_(i+j=n)(()_i(U)_(()_j)(V)+()_i(V)()_j(U)),则()={()_n}_(n∈N)是u上高阶导子.作为应用,得到了套代数上Jordan高阶导子的一个刻画. Let U=Tri(A,M,B)be the triangular algebra with identity I, and let φ={φN}n∈N be a family of linear maps on U. We show that if φ={φN}n∈N satisfying φn(UV+VU)=∑i+j=n(φi(U)φi(V)+φi(V)φj(U))) whenever U, ∈ E with UV = VU = I, then it is a higher derivation. As its application, we give a different characterization of Jordan higher derivations on nest algebras.
作者 刘丹 张建华
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第4期461-468,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11471199) 陕西师范大学研究生培养创新基金(2015CXB007)
关键词 三角代数 Jordan高阶导子 高阶导子 Triangular algebra Jordan higher derivation higher derivation
  • 相关文献

参考文献13

  • 1An R., Hou J., Characterizations of derivations on triangular rings: Additive maps derivable at idempotents, Linear Algebra Appl., 2009, 431: 1070-1080.
  • 2Bresar M., Characterizing homomorphisms, multipliers and derivations in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect., 2007, 137: 9-21.
  • 3Hou J., Qi X., Additive maps derivable at some points on J-subspace lattice algebras, Linear Algebra Appl., 2008, 429: 1851-1863.
  • 4Jing W., On Jordan all-derivable points of B(H), Linear Algebra Appl., 2009, 430: 941-946.
  • 5Li J., Guo J., Characterizations of higher derivations and Jordan higher derivations on CSL algebras, Bull. Aust. Math. Soc., 2011, 83: 486-499.
  • 6Lu F., Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl., 2009, 430: 2233-2239.
  • 7Wei F., Xiao Z., Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl., 2011, 435: 1034-1054.
  • 8Zeng H., Zhu J., Jordan higher all-derivable points on nontrivial nest algebras, Linear Algebra Appl., 2011, 434: 463-474.
  • 9Zhang X., An R., Hou J., Characterizations of higher derivations on CSL algebras, Epo. Math., 2013, 31: 392-404.
  • 10Zhao J., Zhu J., Jordan higher all-derivable points in triangular algebras, Linear Algebra Appl., 2012, 436: 3072-3086.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部