期刊文献+

侧链型磺化聚芳醚阳离子交换膜在微生物燃料电池中的应用

Cation Exchange Membranes based on Side-chain Type Sulfonated Poly( aryl ether) s for Microbial Fuel Cell Applications
原文传递
导出
摘要 采用芳香亲核取代反应及溶液铸膜法,制备了一系列具有不同离子交换容量(IEC)的侧链型磺化聚芳醚砜(s SPFAE)阳离子交换膜,并作为分离膜应用于微生物燃料电池(MFC).研究了s SPFAE膜在双室MFC中产电性能并与商用阳离子交换膜进行了对比.s SPFAE膜的IEC为0.97~1.56 mmol/g,厚度约为80μm,在30℃时吸水率为20.9%~41.7%,电导率达到27.3~60.5 m S/cm,高于商用膜(22 m S/cm,420μm).对采用s SPFAE膜的MFC,根据峰功率密度法及极化曲线斜率法得到的MFC内阻约为29~64Ω,随着IEC的升高而降低,库伦效率达到47.7%~55%,其中s SPFAE-1.56膜的最大功率密度达到657.3 m W/m^2,且s SPFAE膜均表现出优于商用膜的产电性能.利用模拟等效电路对整个MFC系统进行EIS分析,结果表明阳极扩散内阻占这类MFC系统总内阻的87%~90%.结合循环伏安曲线、电化学阻抗谱测试及电极电势分析结果,表明分离膜对两极室间物质传递及阳极扩散阻抗有较大的影响. A series of cation exchange membranes (CEMs) with different ion exchange capacitiy (IEC) values based on side-chain type partially fluorinated sulfonated poly (aryl ether)s (sSPFAEs) are prepared through aromatic nueleophilic substitution and solution casting, and subsequently used as the separator in microbial fuel cell (MFC). Their power production performances in double chamber MFCs are investigated and compared with commercial CEM. The obtained sSPFAE membranes have IEC of 0.97 - 1.56 mmol/g with thickness around 80 μm,show water uptakes of about 20.9% -41.7% ,and proton conductivities of 27.3 - 60.5 mS/cm,which are higher than those for commercial CEM with thickness of 420 μm (22 mS/cm). For the MFCs with sSPFAE membranes, the intermal resistances are in the range of 29 - 64 Ω according to the peak power density and the slope method from the polarization curves, and increase with the IEC; their columbic efficiencies are about 47.7% - 55%. The membrane of sSPFAE-1.56 exhibits the maximum power output of 657.3 mW/cm2 and all the sSPFAE membranes outperform commercial CEM. According to the EIS analysis results for the whole MFC system by equivalent circuit simulation,the anodic diffusion resistances hold 87% -90% of the total resistances. Combining the CV analysis and EIS analysis with the electrode potential test results,the separating membranes have considerable influence upon the mass tranfer across the chambers as well as the anodic diffusion resistance.
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2016年第7期880-886,共7页 Acta Polymerica Sinica
基金 国家自然科学基金(基金号21276128 21206075 21006052) 江苏省自然科学基金(基金号BK20141398) 中央高校基本科研业务费专项资金(项目号30920130121014)资助项目
关键词 微生物燃料电池 分离膜 侧链磺化 磺化聚芳醚 扩散阻抗 Microbial fuel cell Separator Side-chain sulfonation Sulfonated poly(aryl ether) Diffusionresistance
  • 相关文献

参考文献18

  • 1Ge Z, Li J, Xiao L,Tong Y, He Z. Environ Sci Technol Lett,2014,1 (2) : 137 - 141.
  • 2Logan B E,Elimelech M. Nature,2012,488(7411):313 -319.
  • 3Rabaey K, Verstraete W. Trends Biotechnol,2005,23 (6) :291 - 298.
  • 4Leong J X, Daud W R W, Ghasemi M, Ismail M. Renew Sust Energ Rev,2013 ,28 :575 -587.
  • 5Li W W,Sheng G P,Liu X W,Yu H Q. Bioresour Technol,2011,102(1) :244 -252.
  • 6Choi T H,Won Y B,Lee J W,Shin D W,Lee Y M,Kim M Y,Park H B. J Power Sources,2012,220:269 -279.
  • 7Sivasankaran A, Sangeetha D. Fuel,2015,159:689 - 696.
  • 8王飞龙,冉冬琴,张彤,毕慧平,胡朝霞,陈守文.嵌段磺化聚芳醚砜阳离子交换膜的制备及在MFC中的发电性能研究[J].高分子学报,2014,24(5):657-663. 被引量:7
  • 9Hu Z, Yin Y ,Yaguchi K, Endo N ,Okamoto K. Polymer,2009,50( 13 ) :2933 -2943.
  • 10Hidalgo D, Saceo A, Hernmdez S, Tommasi T. Bioresour Techno1,2015,195 : 139 - 146.

二级参考文献36

  • 1莫志军,胡林会,朱新坚.燃料电池广义内阻的在线测量[J].电源技术,2005,29(2):95-98. 被引量:13
  • 2詹姆斯,安德鲁..燃料电池系统--原理,设计,应用[M]..北京:科学出版社,,2006..35-42..
  • 3Wagner N,Schnurnberger W,Muller B,et al.Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells[J].Electrochimica Acta,1998,43(24):3785 - 3793.
  • 4Rabaey K,Verhaege M.Microbial fuel cells:novel biotechnology for energy generation[J].Trends in Biotechnology,2005,23(6):291 - 298.
  • 5Logan B E.Simultaneous wastewater treatment and biological electricity generation[J].Water Science and Technology,2005,52(1-2):31 - 37.
  • 6Cheng S H,Liu H,Logan B E.Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells[J].Environmental Science Technology,2006,40:364 - 369.
  • 7Cheng S H,Liu H,Logan B E.Increased performance of singlechamber microbial fuel cells using an improved cathode structure[J].Electrochemistry Communications,2006,8:489-494.
  • 8Rabaey K,Boon N,Siciliano S D,et al.Biofuel cells select for microbial consortia that self-mediate electron transfer[J].Applied and Environmental Microbiology,2004,70:5373 - 5382.
  • 9Cheng S A,Liu H,Logan B E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J].Environmental Science Technology,2006,40:2426- 2432.
  • 10Aelterman P,Rabaey K,Pham H T,et al.Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells[J].Environmental Science Technology,2006,40:3388-3394.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部