期刊文献+

相机移动场景下的多曝光图像融合系统设计 被引量:1

Design of a multi-exposure image fusion system under the moving camera scene
下载PDF
导出
摘要 由于相机和显示设备的动态范围远小于人眼可识别的动态范围,相机获取到的图像往往不能兼顾亮部细节与暗部细节。多曝光图像融合可以解决上述问题,但目前该方法大多基于相机与目标场景相对静止的前提。文中通过结合图像配准和图像融合,实现一个可以处理运动相机拍摄的多曝光图像的融合系统。首先,配准模块提取SURF特征点,进行欧式距离粗匹配;其次,配准模块利用RANSAC算法进行精匹配,提取变换模型参数并进行投影变换以矫正图像;最后,融合模块利用金字塔融合法融合已配准图像。实验结果表明该系统可有效矫正图像空间位置偏差,扩大图像的动态范围,提高图像质量。 The dynamic range of cameras or display devices is often lower than that of human eyes, therefore images captured by normal cameras are often lack of details in the dark or highlight areas, which can be addressed by multi-exposure image fusion methods. However, almost all these methods are based on the premise that the camera should be relatively static to the target scene. In this research, a system that can proceed images captured by a moving camera is proposed. Firstly, the registration module extracts SURF features from the images and performs a rough match based on Euclidean distance.Secondly, the registration module matches the feature points precisely by using RANSAC algorithm, computes projective transformation model and implements registration. Finally, the fusion module fuses the registered multi-exposure images by using multi-resolution pyramid fusion method. Experimental results indicate that the proposed system can rectify the spatial deviation, expand the dynamic range of fused image and improve its quality effectively.
出处 《电子设计工程》 2016年第12期152-155,158,共5页 Electronic Design Engineering
基金 863军口项目(2014AA8111001)
关键词 图像融合 SURF RANSAC算法 金字塔融合 多曝光图像 image fusion SURF RANSAC algorithm pyramid fusion multi-exposure image
  • 相关文献

参考文献14

二级参考文献117

  • 1王强,张晔,李硕,沈毅.Quantitative and comparative analysis of hyperspectral data fusion performance[J].Journal of Harbin Institute of Technology(New Series),2002,9(3):234-238. 被引量:1
  • 2康圣,王江安,宗思光,陈福胜.图像融合的量化评价方法及实验分析[J].光电子技术与信息,2006,19(2):59-63. 被引量:12
  • 3华顺刚,王丽丹,欧宗瑛.同一场景不同曝光图像的配准及HDR图像合成[J].计算机辅助设计与图形学学报,2007,19(4):528-534. 被引量:9
  • 4TOET A, IJSPEERT J K, WAXMAN A M, et al. Fusion of visible and thermal imagery improves situa- tional awareness[J]. Displays, 1997, 18 (2):85-95.
  • 5RILEY T, SMITH M. Image fusion technology for security and surveillance applications[J]. Optics and Photonics for Counterterrorism and Crime Fighting II, The International Society for Optical Engineer- ing, 2006, 6402: 640204.
  • 6TOET A. Color image fusion for concealed weapon deteetion[J]. SPIE, 2003, 5071: 372-380.
  • 7ZOU X, BHANU B. Tracking humans using multi- modalfusion[J]. IEEE, 2005, 25 (25): W01-30-1- W01-30:8.
  • 8KONG S G, HEO J, BOUGHORBEL F, et al. Multi- scale fusion of visible and thermal ir images for illumina- tion-invariant face recognition[J]. International Journal of Computer Vision, 2007, 71 (2): 215-233.
  • 9DAS S, ZHANG Y. Color night vision for navigation and surveillance[J]. Transportation Research Re- cord, 2000, 1708: 40-46.
  • 10TOET A, HOGERVORST M A, NIKOLOV S G, et al. Towards cognitive image fusion[J]. Informa- tion Fusion, 2010, 11 (2): 95-113.

共引文献156

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部