期刊文献+

退火温度对GaN:Mn薄膜微结构、电学及磁学性能的影响 被引量:1

Effects of Annealing Temperature on Microstructure, Electronic and Magnetic Properties of GaN:Mn films
原文传递
导出
摘要 通过Mn离子注入非故意掺杂GaN外延层制备了GaN:Mn薄膜,研究了退火温度对其微结构、电学和磁学性能的影响。结果表明:所有样品均呈现为单晶纤锌矿结构;离子注入产生的相关缺陷在GaN:Mn薄膜中引起了新的声子模,分析认为Mn替代Ga位后所产生的相关局域振动紧邻GaN的E_2^(high)峰;测量显示材料具有室温铁磁特性,并且磁化强度和电学特性随着退火温度而变化。实验分析结合模拟计算表明,微结构随退火温度的变化引起相应的Ga空位和N空位浓度的变化,使得主导材料磁性能的交换相互作用发生转换,从而使材料磁化强度随着退火温度而变化。 GaN:Mn thin films were preparedvia implanting Mn ions into undoped GaN epilayers. The effect of annealing temperature on the microstructure, electronic and magnetic properties of the thin films was investigated. The results show that all the annealed samples have a single crystalline wurtzite structure without secondary phases. The new phonon modes in the GaN:Mn films are attributed to the vibrational mode of defects caused by the Mn ions implantation and Mn related local vibrational mode in the vicinity ofE2high. The GaN:Mn films exhibit room-temperature ferromagnetism, and their magnetic and electrical properties change with the annealing temperature. Analysis reveals that the alteration of material microstructure with post-annealing temperatures led to the variation of the magnetic exchange interaction, which made the ferromagnetism of this material system vary with post-annealing temperature.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第7期981-986,共6页 Journal of The Chinese Ceramic Society
基金 陕西省教育厅专项科研计划项目(11JK0912) 西安科技大学科研培育基金项目(2010011) 西安科技大学博士启动基金项目(2010QDJ029) 国防预研究基金(9140A08040410DZ106) 中央高校基本科研业务费专项资金(JY10000925005)资助
关键词 锰掺杂氮化镓 微结构 铁磁性 磁交换相互作用 manganese-doped gallium nitride microstructure ferromagnetism magnetic exchange interaction
  • 相关文献

参考文献24

  • 1DIETL T,OHNO H,MATSUKURA F,et al.Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J].Science,2000,287(5455):1019–1022.
  • 2CUI X G,TAO Z K,ZHANG R,et al.Structural and magnetic properties in Mn-doped Ga N grown by metal organic chemical vapor deposition[J].Appl Phys Lett,2008,92(15):52116(1–3).
  • 3BIHLER C,GERSTMANN U,HOEB M,et al.Manganese-hydrogen complexes in Ga1-xMnxN[J].Phys Rev B,2009,80(20):205205(1–10).
  • 4SHI L B,LIU J J,FEI Y.Defect formation and magnetic properties of Co-doped Ga N crystal and nanowire[J].Phys B,2013,426(10):45–51.
  • 5LIN Y T,WADEKAR P V,KAO H S,et al.,Above room-temperature ferromagnetism of Mn delta-doped Ga N nanorods[J].Appl Phys Lett,2014,104(6):062414(1–4).
  • 6ZHANG Z K,SCHWINGENSCHL?GL U,ROQAN I S.Vacancy complexes induce long-range ferromagnetism in Ga N[J].Appl Phys,2014,116(18):183905(1–5).
  • 7MUNAWAR B S,RAMASUBRAMANIAN S,THANGAVEL R,et al.Magnetic properties of Ni doped gallium nitride with vacancy induced defect[J].J Magn Magn Mater,2010,322(2):238–241.
  • 8WENG Z Z,HUANG Z,G,LIN W X.First-principles study of ferromagnetism in Ti-doped Zn O with oxygen vacancy[J].Phys B,2012,407(4):743–747.
  • 9CEZAR A B,GRAFF I L,VARALDA J,et al.Oxygen-vacancyinduced room-temperature magnetization in lamellar V2O5 thin films[J].Appl Phys,2014,116(16):163904(1–7).
  • 10ZOU C W,WU H Z,LIANG F,et al.O-vacancies mediated room temperature ferromagnetism in Cu-implanted In2O3:Cu nanowires[J].Appl Phys Lett,2014,104(22):222105(1–5).

二级参考文献25

  • 1DAI N, LUO H, ZHANG F C, et al. Spin superlattice formation in ZnSe/Zn1-xMnxSe multilayers [J]. Phys Rev Lett, 1991, 67(27): 3824- 3827.
  • 2WOLF S A, AWSCHALOM D D, BUHRMAN R A, et al. Spintronics: a spin-based electronics vision for the future [J]. Science, 2001, 294: 1488-1495.
  • 3CHANG K, CHAN K S, PEETERS F M. Spin-polarized tunneling through a diluted magnetic semiconductor quantum dot [J]. Phys Rev B, 2005, 71: 155309(1-6).
  • 4JIN Z W, FUKUMURA T, KAWASAKI M, et al. High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties [J]. Appl Phys Lett, 2001, 78: 3824-3826.
  • 5DIETL T, OHNO H, MATSUKURA F, et al. Zener model description of ferromagnetism in Zinc-blende magnetic semiconductors [J]. Science, 2000, 287: 1019-1022.
  • 6SATO K, KATAYAMA-YOSHIDA H. Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO [J]. Jpn J Appl Phys, 2001, 40: L334-L336.
  • 7UEDA K, TABATA H, KAWAI T. Magnetic and electric properties of transition-metal-doped ZnO films [J]. Appl Phys Lett, 2001, 79(7): 988-990.
  • 8LEE H J, JEONG S Y, CHO C R, et al. Study of diluted magnetic semiconductor: Co-doped ZnO [J]. Appl Phys Lett, 2002, 81(21): 4020- 4023.
  • 9TUAN A C, BRYAN J D, PAKHOMOV A B, et al. Epitaxial growth and properties of cobalt-doped ZnO on α-Al2O3 single-crystal substrates [J]. Phys Rev B, 2004, 70: 054424(1-9).
  • 10KHARE N, KAPPERS M J, WEI M, et al. Defect-induced ferromagnetism in Co-doped ZnO [J]. Adv Mater, 2006, 18: 1449- 1452.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部