期刊文献+

无机水合盐相变陶粒的制备与性能 被引量:10

Preparation and Properties of Phase Change Ceramisite Loaded with Inorganic Salt Hydrate
原文传递
导出
摘要 采用无机水合盐Ca Cl_2·6H_2O(CCH)作为相变材料,通过真空吸附法制备黏土陶粒负载CCH的相变陶粒,研究了陶粒负载CCH对其液–固相变过冷度的影响以及表面封闭处理对水泥基复合相变材料性能的影响。结果表明,与吸附有机相变材料正癸酸相比,陶粒对CCH的吸附量明显增大,有效减小CCH液–固相变过冷度;采用水泥和聚乙二醇(PEG)对相变陶粒进行包覆,无法实现有效的表面封闭处理:前者在空气中暴露3 d后,表面出现露珠;后者在空气中暴露1个月后,表面出现膨胀性霜状物,使相变陶粒发生破坏。通过进一步吸附正癸酸和油性涂料进行表面处理的相变陶粒,应用于水泥基材料,可有效降低水泥水化放热温升。但采用正癸酸处理时,存在液态正癸酸渗出现象;采用油性涂料处理,则可有效防止液态相变材料渗出。 Phase change ceramisite (PCC) was prepared by vacuum adsorption method using inorganic CaCl2·6H2O (CCH) as phase change material. Effect of loading in ceramsite on super–cooling of CCH during liquid–solid phase change process as well as effect of surface–sealing treatment of PCC on properties of the cement–based composite phase change material were investigated. The results showed that the amount of CCH adsorbed in ceramsite was significantly higher than that of capric acid (CA), and the supercooling degree of CCH during liquid–solid phase change was greatly reduced after being loaded in ceramisite. By simple clading with cement and PEG, the salt hydrate cannot be effectively sealed within ceramisite. The dewdrops appeared on the surface after exposed in the air for 3 d for claded with cement, and expansive cream–like substance was found on the surface after exposed in the air for one month for claded with PEG, leading to a destruction of PCC. After further loaded with capric acid or oily paint, incorporation of both PCC in cement–based materials can effectively lower the temperature rise during hydration. However, the hardened composite showed leakage of CA for the former case whereas no leakage appeared for the ceramisite coated by using oily paint.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第7期1051-1058,共8页 Journal of The Chinese Ceramic Society
基金 国家"十二五"科技支撑计划项目(2013BAL01B01) 浙江省151人才计划出国研修项目
关键词 相变材料 陶粒 复合材料 水泥基材料 phase change materials ceramisite composite material cement-based materials
  • 相关文献

参考文献21

  • 1HAWES D W,FELDMAN D,BANU D.Latent heat storage in building materials[J].Energy Build,1993,20(1):77–86.
  • 2HALFORD C K,BOEHM R F.Modeling of phase change material peak load shifting[J].Energy Build,2007,39(3):298–305.
  • 3张东,周剑敏,吴科如.相变储能复合材料及其电力调峰功能分析[J].华东电力,2003,31(9):27-30. 被引量:15
  • 4ZHANG Dong,ZHOU Jianmin,WU Keru.Electricity in East China(in Chinese),2003,31(9):27-30.
  • 5LEE K O,MEDINA M A.Using phase change materials for residential air conditioning peak demand reduction and energy conservation in coastal and transitional climates in the State of California[J].Energy Build,2016,116:69–77.
  • 6张天友,沈明,张东.膨胀石墨/硬脂酸丁酯复合相变储热脱硫石膏板的研究[J].材料导报,2009,23(14):61-63. 被引量:4
  • 7ZHANG Tianyou,SHEN Ming,ZHANG Dong.Mater Rev(in Chinese),2009,23(7):61-63.
  • 8HAWES D W,FELDMAN D.Absorption of phase change materials in concrete[J].Solar Energy Mater Solar Cells,1992,27(2):91–101.
  • 9SARI A,KARAIPEKLI A,KAYGUSUZ K.Capric acid and stearic acid mixture impregnated with gypsum wallboard for low–temperature latent heat thermal energy storage[J].Int J Energy Res,2008,32(2):154–160.
  • 10HADJIEVA M,STOYKOV R,FILIPOVA T.Composite salt–hydrate concrete system for building energy storage[J].Renew Energy,2000,19(1/2):111–115.

二级参考文献67

共引文献76

同被引文献109

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部