期刊文献+

超临界水冷堆环形燃料组件核热耦合分析 被引量:1

Coupled Neutronics and Thermal-hydraulics Analysis of Annular Fuel Assembly for SCWR
下载PDF
导出
摘要 在超临界水冷堆预概念设计中,组件设计是十分重要的,将影响堆芯性能。超临界水冷堆中水密度变化剧烈的特性要求必须进行核热耦合分析。从中子学及热工性能角度,使用三维核热耦合程序对环形燃料组件进行了优化设计。应用中子学计算程序FENNEL-N对环形燃料组件进行三维扩散计算,可得到组件内单棒功率分布,应用热工计算程序SUBSC对组件进行子通道分析。在计算过程中,分析了燃料棒间距及燃料棒与组件壁盒之间的间隙对组件性能的影响。计算结果显示,增大棒间距和棒壁间隙能提高组件kinf,但会增大组件内功率峰因子;子通道受热不均匀性对组件热工性能影响较大,通过加入定位格架的方式能展平冷却剂出口温度,降低最大包壳温度。对环形燃料组件的安全分析表明,从中子学角度该组件是安全的。 During the pre-conceptual design of supercritical water-cooled reactor(SCWR),assembly design is very important and affects core performance.Coupled neutronics and thermal-hydraulics analysis is required for dramatic changes of water density in SCWR.Annular fuel assembly was optimized from the point of view of neutronics and thermal-hydraulics performance using three-dimensional coupling code.Three-dimensional diffusion calculation for annular fuel assemblies was carried out using FENNEL-N and pin power distributions were obtained.With these pin power distributions,SUBSC was used to perform the sub-channel analysis.The effects of fuel rod distance and gapbetween fuel rods and assembly box on assembly performance were researched in the coupled analysis.Results show that increasing fuel rod distance and rod-to-box gap will increase kinfand assembly power peaking factor.It is also shown in the results that heating heterogeneity of sub-channels plays a big role in assembly thermal performance and adding grid will flatten coolant outlet temperature as well as decrease maximum cladding surface temperature.Safety analysis of annular fuel assembly shows that the assembly is safe from the point of view of neutronics.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2016年第6期1047-1053,共7页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(91226106)
关键词 环形燃料 超临界水冷堆 核热耦合 annular fuel supercritical water-cooled reactor coupled neutronics and thermal-hydraulics
  • 相关文献

参考文献10

  • 1A Technology Roadmap Energy Systems[C]. for Generation 1V Nuclear Washington D. C.: USDOE, 2002.
  • 2HEUZLAR P, DRISCOLL M J, KAZIMI M S. High performance annular fuel for pressurized water reaetors[J]. Transactions of the American Nuclear Society, 2001, 84: 192-204.
  • 3FENG D, HEJZLAR P, KAZIMI M S. Ther- mal-hydraulic design of high-power-density annu- lar fuel in PWRs[J]. Nuclear Technology, 2007, 160 : 16-44.
  • 4MOZAFARI A M, FAGHIHI F. Design of an- nular fuels for a typical VVER-1000 core: Neu- tronic investigation, pitch optimization and MD- NBR calculation[J].Annals of Nuclear Energy, 2013, 60: 226-234.
  • 5ZHAOC Q, CAO L Z, WU H C, et al. Pre- conceptual core design of SCWR with annular fuel rods[J].Nuclear Engineering and Design, 2014, 267: 23-33.
  • 6STAMMLrER R. User's manual for helios[M]. Waltham, MA, USA: Studsvik Scandpower, 1994.
  • 7高盛楠,吴宏春,李云召,等.压水堆群常数接口处理方法研究[C]//反应堆数值计算与粒子输运学术会议论文集.成都:中国核学会,2014.
  • 8ARKUSZEWSKI J J. SIXTUS2.. A two dimen- sional diffusion theory nodal code in hexagonal geometry[J]. Progress in Nuclear Energy, 1986, 18: 123-136.
  • 9BISHOP A A, SANDBERG R O, TONG L S. Forced convection heat transfer to water at near- critical temperatures and supercritical pressures, Report Wcap-2056, Part IV [R]. Pittsburgh, USA.. [s. n.], 1964.
  • 10HOFMEISTER J, WAATA C, STARFLINGER J, et al. Fuel assembly design study for a reactor with supercritical water[J]. Nuclear Engineering and Design, 2007, 237(14): 1 513-1 521.

共引文献2

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部