期刊文献+

基于GPU的快速能谱图生成方法

A Fully GPU- Based Quick Method for Spectroscopy Generation
下载PDF
导出
摘要 针对使用CPU统计加速器能谱图的过程中,消耗时间过长的问题,给出了一种完全由GPU实现粒子能量统计、最大值bin的查找、绘制能谱图的方法,可以降低CPU的负担,发挥GPU的效率,解决了CPU和GPU之间数据传输的瓶颈问题。实验结果表明,与只使用CPU和只使用GPU进行数据统计而不进行结果显示的2种方案相比,在处理大量粒子数据时,可以获得80倍以上的加速比。 Aiming to solve the problem encountered in the process of CPU- based spectroscopy generation,which usually consumes too much time,in this paper,a method fully based on GPU is proposed,in which GPU can alone implement particles statistics,seek maximum bin,and display spectroscopy on screen. By doing so,burden of CPU is decreased and efficiency of GPU is increased,the bottleneck of data delivering between CPU and GPU is overcomed. The experimental results indicate that,compared with the scheme which only uses CPU and other scheme performing statistics by GPU,this kind of scheme can achieve 80 times speedup when processing large amount of particle data.
出处 《核电子学与探测技术》 CAS 北大核心 2016年第1期52-55,共4页 Nuclear Electronics & Detection Technology
基金 国家自然科学基金(U1232123) 甘肃省高等学校科研项目(2013B-100)
关键词 能谱图 互操作 计算设备统一架构 并行计算 开源图像库 spectroscopy interoperability compute unified device architecture(CUDA) parallel algorithm OpenGL
  • 相关文献

参考文献10

  • 1NVIDIA. CUDA Compute Unified Device Architec- ture : Programming Guide ( Version 4.2) [EB/OL]. http ://www. nvidia, corn/ objeet/cuda _home. html, 2011 - 11.
  • 2NVIDIA. Fermi computer architecture ( White paper) [EB/OL]. http://www, nvidia, cn/contentJPDF/ fermi white papers/, 2011 - 03 - 30.
  • 3张健,陈瑞.图形处理器在通用计算中的应用[J].计算机工程与设计,2009,30(14):3359-3361. 被引量:4
  • 4Podlozhnyuk V. Histogram calculation in CUDA (White paper) [EB/OL]. http ://download. nvidia. cn/compute/cudafl _ 1/website/ projects/hista- gram256/doc/histogram pdf,2011 - 03 - 30.
  • 5Shams R, Kennedy R A. Efficient histogram algo- rithms for NYIDIA CUDA compatible devices [C]. ICSPCS2007, New York :IEEE, 2007:418 - 422.
  • 6Song Ho Ahn. OpenGL Pixel Buffer Object[EB/OL]. http ://www. songho, ea/opengl/gl_pbo, htm1,2012.
  • 7CSDN. [EB/OL]. http ://biog. csdn. net/ruby97/ar-.title/details/8851403,2013.
  • 8NVIDIA. Cuda C Best Practices Guide 3.2 [EB/ OL]. http ://Developer. Download. nvidia, cn/com- puter/cuda/3_2/toolkit/does/ cuda C Best_Prac- tices_Guide pdf, 2011 - 03 - 30.
  • 9Fung J, Mann S. Computer Vision Signal Processing on Graphics Processing Units[C]. IEEE ICASSP, V- 93 - V - 96, 2004.
  • 10Owens J D, Luebke D, Govindaraju N, et al. A sur- vey of general - purpose computation on graphics hardware [R]. Computer Graphics Forum, 2007, 26 : 80 - 113.

二级参考文献8

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2Macedonia M.The GPU enters computing's mainstream[J].IEEE Computer,2003,36(10):106-108.
  • 3Cuda programming guide version 2.0[M].NVIDIA Corporation,2008.
  • 4Kruger J,Westermann R.Linear algebra operators for GPU implementation of numerical algorithms[J].ACM Trans on Graphics,2003,22(3):908-916.
  • 5Hall JD,Carr NA,Hart JC.Cache and bandwidth aware matrix multiplication on the GPU[R].Champaign:University of Illinois at Urbana-Champaign,2003.
  • 6Thompson CJ,Hahn S,Oskin M.Using modern graphics architectures for general-purpose computing:A framework and analysis[C].Proc of the Int'l Syrup on Microarchitecture,2002:306-317.
  • 7Govindaraju NK,Sud A,Yoon SE,et al.SWITCH:Parallel occlusion culling for interactive walkthroughs using multiple GPUs[R].Techical Report,TR02-027,UNC-CH,2002.
  • 8Tomov S,McG-uigan M,Bennett R,et al.Benchmarking and implementation of probability-based simulations on programmable graphics cards[J].Computers and Graphics,2005,29(1):53-56.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部