摘要
具有对抗性的群体突发事件给社会造成极大的危害.由于该类突发事件发生的时间、模式、方式、后果等均具有不确定性,给应急决策增加了很大的难度.在分析具有对抗性群体突发事件特征及其应急决策各要素的基础上,采用马尔可夫状态转移过程的理论模型,定义了两个具有对抗性群体突发事件应急决策Decision-Ⅰ和应急决策Decision-Ⅱ,分析了Decision-Ⅰ和Decision-Ⅱ间的内涵关系,证明了Decision-Ⅰ可以转化为Decision-Ⅱ决策、Decision-Ⅱ的最优应急决策策略适用于Decision-Ⅰ决策等结论.进一步给出并证明了Decision-Ⅱ决策最优稳妥策略的存在性.最后通过一个算例计算分析,验证了Decision-Ⅰ和Decision-Ⅱ模型的有效性和实用性.
Unexpected incidents involving mass participation with antagonism caused great harm to the society. For the occur time, mode, way, consequences of these kind of unexpected incidents are uncertain, it make the emergency response decision making very difficult. Based in the analysis of the characteristics of unexpected incidents involving mass participation with antagonism and the factor of the emergency response decision making, this paper defined two unexpected incidents involving mass participation with antagonism model emergency response decision making Decision-I and emergency response decision making Decision-II,It analysised the connotation of the relationship between Decision-I and Decision-II, and proved that Decision-I can be transformed into Decision-I decision making, and the optimal emer- gency decision strategy of Decision-II are applicable to Decision-I. Further more, it proved the existence of the optimal safe emergency decision strategy of Decision-II. Finally, a calculation example, verify the effectiveness of Decision-I and Decision-II model.
出处
《数学的实践与认识》
北大核心
2016年第12期22-32,共11页
Mathematics in Practice and Theory
基金
国家自然科学基金(71171174)
河北省自然科学基金(G2014203219)
关键词
对抗性群体突发事件
应急决策
最优策略
关联算子
unexpected incidents involving mass participation with antagonism
emergency response decision making
the optimal emergency decision strategy
operator of related