期刊文献+

第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性

First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb
下载PDF
导出
摘要 采用第一性原理的全势能线性缀加平面波方法,对semi-Heusler合金CoCrTe和CoCrSb的电子结构进行自旋极化计算.CoCrTe和CoCrSb处于平衡晶格常数时是半金属性铁磁体,其半金属隙分别为0.28和0.22 eV,晶胞总磁矩为3.00μB和2.00μB.CoCrTe和CoCrSb的晶胞总磁矩主要来自于Cr原子磁矩.Co,Te和Sb的原子磁矩较小,它们的磁矩方向与Cr原子的磁矩方向相反.使晶格常数在±13%的范围内变化(相对于平衡晶格常数),并计算CoCrTe和CoCrSb的电子结构.计算研究表明,CoCrTe和CoCrSb的晶格常数变化分别在-11.4%—9.0%和-11.2%—2.0%时仍具有半金属性,并且它们晶胞总磁矩稳定于3.00μB和2.00μB. Half-metallic ferromagnet, in which the electrons with one spin band are metallic and the electrons with another spin band are semiconducting, is believed to be the most promising spin-injector material for spintronic devices, such as spin valves, spin filters, spin diodes, and magnetic tunnel junctions. The main advantages of half-metallic Heusler alloy over other half-metallic systems are their relatively high Curie temperatures and structural similarity to important binary semiconductors that are widely utilized in the industry. Thus far, half-metallicity has been predicted theoretically or confirmed experimentally in a limited number of Heusler alloys. Exploring new half-metallic Heusler alloys is necessary. In this study, the full-potential linearized augmented plane wave (FP_LAPW) method under density functional theory is utilized to investigate the electronic structures and magnetisms of semi-Heusler alloys CoCrTe and CoCrSb. In the calculations, the generalized gradient approximation (GGA) in the scheme of Perdew-Bueke-Ernzerhof is adopted to treat the exchange-correlation potential. The cutoff parameter is set to be Rmt × Kmax=9, where Rmt is the smallest atomic sphere radius and Kmax is the maximum value of the reciprocal lattice vector. Meshes (13× 13× 13 k-points) are used in the first Brillouin zone integration. Self-consistent calculations are considered to be convergent only when the integrated charge difference between the last two iterations is less than 1 × 10-4 e/cell. Spin-polarized calculations of the electronic structure for the semi-Heusler alloys CoCrTe and CoCrSb are performed. The calculations reveal that CoCrTe and CoCrSb at their equilibrium lattice constants are half-metallic ferromagnets with half-metallic gaps of 0.28 and 0.22 eV and total magnetic moments of 3.00 and 2.00 μB per formula unit, respectively. The calculated integer total magnetic moments (in μB) are consistent with the Slater-Pauling rule, Mt=Zt-18, where Zt denotes the total number of valence electrons and Mt means the total magnetic moment (in μB) per formula unit. Moreover, the spin moment of the Cr atom is obviously larger than those of the Co, Te, and Sb atoms. Co, Te and Sb are all antiferromagnetically coupled to Cr for CoCrTe and CoCrSb. The electronic structures of CoCrTe and CoCrSb are also calculated as their lattice constants change from -13% to +13% relative to the equilibrium lattice constant. The calculated results indicate that CoCrTe and CoCrSb can maintain their half-metallicities and retain their total magnetic moments of 3.00 and 2.00 μB per formula unit even as their lattice constants change from -11.4% to 9.0% and from -11.2% to 2.0%, respectively. The semi-Heusler alloys CoCrTe and CoCrSb should be useful in spintronics and other applications.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第12期258-266,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11364014 11364015) 海南省自然科学基金(批准号:113005 20165196)资助的课题~~
关键词 第一性原理 半金属 电子结构 磁性 first principle, half metal, electronic structure, magnetism
  • 相关文献

参考文献32

  • 1de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024.
  • 2Yanase A, Siratori K 1984 J. Phys. Soc. Jpn. 53 312.
  • 3Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211.
  • 4Galanakis I, Mavropoulos P .2003. Phys. Rev. B 67 104417.
  • 5Yao K L, Gao G Y, Liu Z L, Zhu L .2005. Solid State Commun. 133 301.
  • 6Xie W H, Xu Y Q, Liu B G, Pettifor D G .2003. Phys. Rev. Lett. 91 037204.
  • 7Yao Z, Zhang Y S, Yao K L .2012. Appl. Phys. Lett. 101 062402.
  • 8lanakis I, Mavropoulos P .2007. J. Phys.: Condens. Matter 19 315213.
  • 9Picizzio S, Continenza A, Freeman A J .2002. Phys. Rev. B 66 094421.
  • 10Droghetti A, Baadji N, Sanvito S .2009. Phys. Rev. B 80 235310.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部