期刊文献+

正交各向异性双层交换弹簧薄膜的磁矩分布 被引量:1

Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies
下载PDF
导出
摘要 本文以Pt_(84)Co_(16)/TbFeCo双层交换弹簧体系为研究对象,利用微磁学连续模型,研究了软/硬磁层易轴方向相互垂直的新型体系中磁矩的分布特征.研究结果表明,磁矩偏离薄膜法线方向的角度在软磁层中沿膜厚方向的变化速率比硬磁层中的快.通过调节软磁层参数来增加软/硬磁的各向异性常数比、交换能常数比、饱和磁化强度比或外磁场强度,都可有效改变磁矩偏角在软/硬磁层中的变化速率.特别是当软/硬磁各向异性常数比值和交换能常数比值同时增大时,可以使得磁矩在硬磁层中的变化速率快于软磁层中的.而饱和磁化强度比值对磁矩变化速率的影响源于饱和磁化强度的变化会相应地改变各向异性常数,进而改变磁矩在软/硬磁层中磁矩方向变化速率的比值.此体系的磁滞回线显示磁性参数的改变可以显著改变体系的剩磁及饱和磁场.软磁层中的退磁场能及体系的正交各向异性可导致负的成核场. A soft/hard bilayer system with mutually orthogonal anisotropies is considered in this paper. The easy axis of the hard layer is perpendicular to the film plane, and the easy axis of the soft layer is parallel to the film plane. Pt84Co16 is chosen as the soft layer material, and TbFeCo is chosen as the hard layer material. The one-dimensional continuum micromagnetic model is used. The characteristics of nucleation fields, angular distribution and hysteresis loops are studied. The calculation results show that the nucleation field decreases rapidly and even turns negative with increasing soft layer thickness. This negative nucleation field is caused by the demagnetizing field and the easy axis orientation of the soft layer which is parallel to the film plane. Both of these two factors can induce an effective in-plane uniaxial anisotropy, which will tend to align the magnetization of the soft layer parallel to the film plane. As the magnetocrystalline anisotropy constant Kμ of the soft layer is very small, the negative nucleation field mainly comes from the demagnetizing field of the soft layer. The angular distribution calculation shows that the change rate of magnetization deviation angle (degree per nanometer) along z axis in the soft layer is faster than that in the hard layer. The angular change rate could be adjusted by varying the anisotropy constant ratio, exchange energy constant ratio, or external field. When the anisotropy constant ratio K s/K h (soft/hard) or exchange energy constant ratio As/Ah (soft/hard) increases, the angular change rate ratio (soft/hard) decreases. Especially when both Ks/Kh and As/Ah increase at the same time, the angular change rate in the hard layer could become faster than that in the soft layer. If the anisotropy constant Ks becomes larger, it is more di-cult for the magnetization in the soft layer to deviate from its easy axis than before. This will also enhance the pinning effect of the magnetization in the soft layer, and reduce the difference in deviation angle between the two boundaries of the soft layer. When the exchange energy constant As increases, the magnetization tends to become parallel to the neighboring magnetization, which also reduces the angular change of magnetization in the soft layer. As the anisotropy constant is roughly proportional to the square of spontaneous magnetization, the effect of spontaneous magnetization on the angular change rate comes from the anisotropy constant change. The simulation for the hysteresis loops shows that the saturation field strength increases while the remanence decreases with increasing both the values of Ks and As.
作者 陈传文 项阳
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第12期267-274,共8页 Acta Physica Sinica
基金 福建省自然科学基金(批准号:2013J05010) 中央高校中青年教师科技创新计划(批准号:ZQN-YX107) 华侨大学科研基金(批准号:11BS403 11BS404)资助的课题~~
关键词 交换弹簧 成核场 角分布 磁矩 exchange spring, nucleation field, angular distribution, magnetization
  • 相关文献

参考文献33

  • 1Uzdin V M, Vega A, Khrenov A, Keune W, Kuncser V E, Jiang J S, Bader S D .2012. Phys. Rev. B 85 024409.
  • 2Shelford L R, Liu Y, A1-Jarah U, de Groot P A J, Bow- den G J, Ward R C C, Hicken R J .2014. Phys. Rev. Lett. 113 067601.
  • 3Wang K, Ward R C C, de Groot P A J .2014. Mater. Lett. 116 143.
  • 4Jiang J S, Bader S D .2014. J. Phys-eondens. Mater. 26 O64214.
  • 5Bance S, Oezelt H, Schrefl T, Winklhofer M, Hrkac G, Zimanyi G, Gutfleisch O, Evans R F L, Chantrell R W, Shoji T, Yano M, Sakuma N, Kato A, Manabe A .2014. Appl. Phys. Lett. 105 192401.
  • 6鲜承伟,赵国平,张庆香,徐劲松.垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转[J].物理学报,2009,58(5):3509-3514. 被引量:12
  • 7Weller D, Parker G, Mosendz O, Champion E, Stipe B, Wang X B, Klemmer T, Ju G P, Ajan A .2014. IEEE Trans. Magn. 50 3100108.
  • 8Wang K, Chen R F, Chen C W, Ward R C C .2015. J. Magn. Magn. Mater. 3TT 295.
  • 9Wang K, Xiang Y, Chen C W, Zhuang F J, Wu X F, Ward R .2015. Funct. Mater. Lett. 8 1550053.
  • 10张约品,王现英,林更琪,李震,李佐宜,沈德芳,干福熹.2004.物理学报,53614.

二级参考文献23

  • 1张宏伟,荣传兵,张绍英,沈保根.高性能纳米复合永磁材料的模拟计算研究[J].物理学报,2004,53(12):4347-4352. 被引量:16
  • 2Kneller E F, Hawlg R 1991 IEEE Trans. Magn. 27 3588
  • 3Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812
  • 4Zhao G P, Wang X L 2006 Phys. Rev. B 74 012409
  • 5Zhao G P, Zhao M G, Lira H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513
  • 6Parhofer S M, Wecker J, Kuhrt C et al 1996 IEEE Trans. Magn. 32 4437
  • 7Sellmyer D J 2002 Nature 420 374
  • 8Chang W C, Chiou D Y, Wu S H et al 1998 Appl. Phys. Lett. 72 121
  • 9Al-Omarl I A, Sellmyer D J 1995 Phys. Rev. B 52 3441
  • 10Shindo M, lshizone M, Sakuma A, Kato H, Miyazaki T 1997 J. Appl. Phys. 81 4444

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部