期刊文献+

氮掺杂石墨烯量子点的激发波长依赖性发光研究 被引量:2

Origin of excitation wavelength dependent photoluminescence of nitrogen-doped graphene quantum dots
下载PDF
导出
摘要 激发波长依赖发光是碳基荧光材料中有趣的光学性质之一,其在不同激发波长下呈现的多彩发光对某些实际应用很重要.本文以氧化石墨烯为碳源,采用酸氧化法制备了尺寸约为3~5nm的少层石墨烯量子点(GQDs),然后将其与乙二胺(EDA)在160℃下进行水热反应,得到了石墨烯边缘氮掺杂的石墨烯量子点(NGQDs).采用傅立叶变换红外光谱(FTIR)证实了N-GQDs中酰胺键和胺C-N键的形成.GQDs的吸收主要来自C=C的π-π*跃迁(265nm)和C-O相关的n-π*跃迁(340nm),而N-GQDs中出现了C(=O)NHR相关的新能级(386nm).GQDs荧光峰随着激发光波长的移动Δλem/Δλex呈现线性变化,斜率约为0.43,而N-GQDs的Δλ_(em)/Δλ_(ex)出现两段线性变化,激发波长在420nm以后斜率增大到0.78,表明C(=O)NHR相关的荧光偶极子具有更强的激发波长依赖性发光特性. The excitation wavelength dependent photoluminescence is a common phenomenon observed in the carbon-based fluorescent materials.It can afford multi-PL colors under the different excitation wavelengths,that is important for certain practical applications.In this work,a few layer graphene quantum dots(GQDs)with a size of 3-5nm were prepared via acidic oxidation of graphene oxide,and then were treated with ethylenediamine(EDA)under 160 ℃hydrothermal to obtain the nitrogen doped graphene quantum dots(N-GQDs).Fourier transform infrared spectroscopy(FT-IR)demonstrated that the C-N bonds of amide and amine were formed.The PL excitation peaks of 265 nm and 340 nm can be attributed to the C=C relatedπ-π*transitions and C-O related n-π*transitions,respectively.New energy levels was observed at 386 nm due to C(=O)NHR related local molecular structure.The slope of the change in the peak emission wavelength for a given change in excitation wavelength,Δλ_(em)/Δλ_(ex) creating a linear slope ~0.43,but theΔλ_(em)/Δλ_(ex) shows two linear range,creating a larger slope^0.78when λ_(ex)420nm.So the C(=O)NHR related fluorescence dipole induces stronger excitation wavelength dependent photoluminescence.
出处 《化学研究》 CAS 2016年第3期280-285,共6页 Chemical Research
基金 国家自然科学基金项目(51403051)
关键词 石墨烯量子点 发光 激发波长依赖性 graphene quantum dots photoluminescence excitation wavelength dependent
  • 相关文献

参考文献1

共引文献127

同被引文献67

  • 1潘艳,张莉萍,张克营,马海艳,张玉忠.聚苯乙烯磺酸钠/单壁碳纳米管复合膜修饰电极对体系中抗坏血酸、尿酸、多巴胺的的电分离研究[J].安徽师范大学学报(自然科学版),2007,30(5):575-579. 被引量:7
  • 2Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. Adv. Funct. Mater. 2015, 25, 4929. doi: 10.1002/adfm.201501250.
  • 3Zhao, A.; Chen, Z.; Zhao, C.; Gao, N.; Ren, J.; Qu, X. Carbon 2015, 85, 309. doi: 10.1016/j.carbon.2014.12.045.
  • 4Miao, P.; Han, K.; Tang, Y.; Wang, B.; Lin, T.; Cheng, W.Nanoscale 2015, 7, 1586. doi: 10.1039/C4NR05712K.
  • 5Ding, C.; Zhu, A.; Tian, Y. Accounts Chem. Res. 2014, 47, 20. doi: 10.1021/ar400023s.
  • 6Lin, X.; Yang, Y.; Nian, L.; Su, H.; Ou, J.; Yuan, Z.; Xie, F.; Hong, W.; Yu, D.; Zhang, M.; Ma, Y.; Chen, X. Nano Energy 2016, 26, 216. doi: 10.1016/j.nanoen.2016.05.011.
  • 7Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. Nanoscale 2013, 5, 4015. doi: 10.1039/C3NR33849E.
  • 8Wang, Y.; Hu, A. J. Mater. Chem. C 2014, 2, 6921. doi: 10.1039/C4TC00988F.
  • 9Strauss, V.; Clark, T.; Guldi, D. M.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E. J. Am. Chem. Soc. 2014, 136, 17308. doi: 10.1021/ja510183c.
  • 10Huang, J.; Rong, M. Z.; Zhang, M. Q. Phys. Chem. Chem. Phys. 2016, 18, 4800. doi: 10.1039/C5CP06582H.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部