期刊文献+

关于Diophantine方程x^2-Dy^2=±2的两个问题

Two Problems Concerning the Diophantine Equation x^2-Dy^2=±2
下载PDF
导出
摘要 设D是不含素因数q≡5或7(mod 8)的无平方因子正奇数,p是大于3的奇素数.给出方程x^2-Dy^2=±2有正整数解(x,y)的充要条件,并且证明了当p≡17(mod 24)时,方程x^2-3py^2=-2必有正整数解(x,y). Let D be a positive odd integer with square free and Dhas no primes q≡5 or 7(mod 8),and let p be an odd prime with p3.In this paper,a necessary and sufficient condition for the equation x^2-Dy^2=±2 has positive integer solutions(x,y)is given.Moreover,we prove that if p≡17(mod 24),then the equation x^2-Dy^2=-2 must have positive integer solutions(x,y).
作者 付瑞琴 杨海
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第3期307-309,314,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11226038) 陕西省教育厅专项基金(14JK1311) 西安石油大学博士科研项目(2015B506)
关键词 二元二次Diophantine方程 PELL方程 可解性 binary quadratic Diophantine equation Pell equation solvability
  • 相关文献

参考文献5

  • 1Whitford E E. The Pell equations [M]. New York .. Blaisdell ,1912.
  • 2Barbeau E J. Pell's equation [M]. New York..Springer,2003.
  • 3吴莉,王学平,杨仕椿.Pell方程x^2-Dy^2=±2的解的递推性质[J].四川师范大学学报(自然科学版),2013,36(2):190-192. 被引量:5
  • 4华罗庚.数论导引[M].北京:科学出版社,1979..
  • 5Petr K. Sur l'equation de Pell [J]. Casopis Pest Mat Fys,1927,56(1):57-66.

二级参考文献18

  • 1Flath D E. Introduction to Number Theory[ M ]. New York:Wiley, 1989.
  • 2Guy R K. Unsolved Problem in Number Theory [ M ]. 3rd. New York : Springer - Verlag,2004:4 - 10.
  • 3Epstein P. Zur attflosbarkeit der gleichung x2 - Dy2 = 1 [ J ]. J Reine Angew Math, 1934,171:243 - 252.
  • 4Grytczuk A, Luca F, Wojtowicz M. The negative Pen equation and Pythagorean triples[J]. Proc Japan Acad,2000,76(1) :91 -94.
  • 5McLaughlin J. Multi -variable polynomial solutions to Pell equation and fundamental units in real quadratic fields[ J]. Pacific J Math,2003,210:335 - 49.
  • 6Lenstra Jr H W. Solving the Pell equation [ J ]. Notices Am Math Soc,2002,49:182 -92.
  • 7Li K Y. Pell equation[ J ]. Mathematical Excalibur,2001,6 : 1 - 4.
  • 8Matthews K. The Diophantine equation x2 - Dy2 = N,D > 0[ J] . Expositiones Math,2000,18:323 - 331.
  • 9Mollin R A. A simple criterion for solvability of both X2 -DY2 = c and X2 -DY2 = -c[ J ]. New York J Math,2001,7:87 -97.
  • 10Mollin R A, Cheng K, Goddard B. The Diophantine equation AXz -BY2 = C solved via continued fractions [ J ]. Aeta Math Univ Comenianae ,2002,71 : 121 - 138.

共引文献227

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部