期刊文献+

氟氯磷灰石固溶体晶体性质的密度泛函理论研究 被引量:4

Crystal Structures of Fluor-chlorapatite Solid Solution: DFT Investigation
下载PDF
导出
摘要 基于密度泛函理论(DFT)研究了氟磷灰石、氯磷灰石及不同Cl含量的氟氯磷灰石固溶体晶体结构和电子性质。结果表明,随着Cl含量增加,体系能量趋于增大,同时晶体结构中a,b值呈增大趋势,c值却逐渐变小。态密度分析显示,Cl取代F后,Cl3s态较F 2s态向右移动,且在价带顶部Cl 3p态更靠近费米能级,同时峰费米能级附近Ca_23d态也更活跃。电荷分析显示Cl取代F后,主要电荷转移发生在通道原子F、Cl以及金属Ca;Mulliken键布居显示Ca_2—Cl较Ca_2—F键布居值更大且键长更长,其中在氯磷灰石中Ca_2—Cl键长达到了0.2608 nm。 The structure and electronic properties of the fluorapatite, chlorapatite and their solid solution are investigated based on DFT theory. The results show that as C1 increases, the energy increases, and the lattice parameters a, b also increase, but c decreases. DOS analysis indicates that after C1 replaces F, C1 3s state moves to right to a higher level compared with F 2s state, and C1 3p state is closer to the Femi level. At the same time, Ca2 3d state near the Femi level is more active. The Mulliken atomic charge analysis reveals that the charge transfer mainly occurs on the atom F, C1 and Ca. The Mulliken bond population analysis show that the Ca2--Cl population is larger and longer than the Ca2--F, even reaching 0.2608 nm in chlorapatite.
出处 《矿冶工程》 CAS CSCD 北大核心 2016年第3期62-65,73,共5页 Mining and Metallurgical Engineering
基金 国家科技支撑计划课题(2013BAB07B03) 国家自然科学基金(51264005) 贵州省"125计划"重大科技专项:黔教合专项字[2013]019 贵州省重大专项:[(2011)6023号] 贵州大学创新基金(理工2015072)
关键词 磷灰石 密度泛函理论 分子模拟 固溶体 晶体结构 apatite DFT molecular simulation solid solution crystal structure
  • 相关文献

参考文献16

  • 1Koppelaar R H E M, Weikard H P. Assessing phosphate rock depletion and phosphorus recycling options [ J ]. Global Environmental Change, 2013,23(6) : 1454-1466.
  • 2Zhang P. Comprehensive Recovery and Sustainable Development of Phosphate Resources[J]. Precedia Engineering,2014,83:37-51.
  • 3Chien C S, Liao T Y, Hong T F, et al. Investigation into microstruc- tural properties of fiuorapatite Nd-YAG laser clad coatings with PVA and WG binders [ J ]. Surface and Coatings Technology, 2011,205 (10) :3141-3146.
  • 4Pettenati M, Perrin J, Pauwels H, et al. Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: Application to a crystalline aquifer of Southern India[ J]. Ap- plied Geochemistry, 2013,29 : 102-116.
  • 5Okada M, Matsumoto T. Synthesis and modification of apatite nanop- articles for use in dental and medical applications[ J]. Japanese Dent- al Science Review, 2015,51 ( 4 ) : 85 - 95.
  • 6Rawashdeh R A, Maxwell P. The evolution and prospects of the phos- phate industry[ J]. Mineral Economics ,2011,24( 1 ) : 15-27.
  • 7Piga G, Solinas G, Thompson T J U, et al. Is X-ray diffraction able to distinguish between animal and human bones? [J]. Journal of Archae- ological Science, 2013,40 ( 1 ) : 778 - 785.
  • 8Zhao J, Dong X, Bian M, et al. Solution combustion method for syn- thesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite [ J 1. Applied Surface Science, 2014,314 : 1026-1033.
  • 9秦玉华,王胜天,关晓辉,许宏鼎.磷灰石通道离子替换对细胞色素C直接电化学的影响[J].分析化学,2004,32(12):1613-1616. 被引量:3
  • 10刘羽,彭明生.磷灰石结构替换的研究进展[J].岩石矿物学杂志,2003,22(4):413-415. 被引量:27

二级参考文献40

  • 1[2]Yanagisawa K,Rendon-Angeles J C,Ishizawa N,etal.Topotaxial replacement of chlorapatite byhydroxyapatite during hydrothermal ion exchange[J].American Mineralogist,1999,84:1881-1869.
  • 2[3]Calderín L,Stott M J.Electronic and crystallographicstructure of apatites[J].Physical Review B,2003,67:134,106.
  • 3[4]John M Hughes,Maryellen Cameron,Kevin D Crowley.Crystal structures of natural ternary apatites:solid solution in the Ca5(PO4)3X(X = F,OH,Cl)system[J].American Mineralogist,1990,75:295-304.
  • 4[5]A E Boudreau á C,Love áM D Prendergast.Halogen geochemistry of the Great Dyke,Zimbabwe[J].Contrib Mineral Petrol,1995,122:289-300.
  • 5[6]Jha L J,Best S M,Knowles J C,et al.Preparation and characterization of fluoride-substituted apatites[J].Journal of Materials Science:Materials inMedicine,1997,8:185-191.
  • 6[7]Wei M,Evans J H,Bostrom T,et al.Synthesis and characterization of hydroxyapatite,fluoride-substituted hydroxyapatite and fluorapatite[J].Journal of Materials Science:Materials in Medicine,2003,14:311-320.
  • 7[8]Rodriguez-Lorenzo L M,Hart J N,Gross K A.Influence of fluorine in the synthesis of apatitie:synthesis of solid solutions of hydroxyl-fluorapatite[J].Biomaterials,2003,24:3777-3785.
  • 8[9]Bruknet,Thibauh Charpentier,Joseph Virlet.Synthesis and NMR characterization (1H and 31pMAS) of the fluorine-free hydroxylapatite-britholite-(Y) series[J].American Mineralogist,2002,87:947-957.
  • 9[10]John M Hughes,Maryllen Cameron,Kevin D Crowley.Structural variations in natural F,OH,and CI apatites[J].American Minealogist,1989,74:870-876.
  • 10[11]Panda R N,Hsieh M F,Chung R J,et al.FTIR,XRD,SEM and solid state NMR investigations of caronate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique[J].Journal of Physics and Chemistry of Solids,2003,64:193-199.

共引文献38

同被引文献47

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部