期刊文献+

基于轮廓分析的广义步态识别算法研究 被引量:3

Generalized Gait Recognition Based on Silhouette Analysis
下载PDF
导出
摘要 在步态识别中,最关键的是获取步态特征之后如何选择最佳投影方向,且计算复杂度较小.因此,根据对现有算法的分析,提出一种基于轮廓特征的的广义步态识别算法.在传统的线性判别分析方法基础上,通过重新定义样本类间离散矩阵寻找最佳投影方向,使不同的目标映射到同一低维空间中,在保留同类结构信息的同时最大化不同类的间距.首先对每个序列进行运动轮廓提取,根据轮廓解卷绕方法将二维轮廓形状转换为一维距离信号,并通过广义线性判别分析方法(Generalized Linear Discriminative Analysis,GLDA)得到最佳投影空间,最终利用支持向量机(Support Vector M achine,SVM)完成分类识别.实验结果表明,该算法简单有效,具有更高的识别率,并且计算代价及处理速度明显优于其他现有算法. The key of gait recognition is to search the best projection direction after obtaining the gait features with lower computational complexity. A generalized Linear Discriminative Analysis based on Euclidean norm( GLDA) for gait recognition is proposed in this paper. Based on the classical algorithm of LDA,GLDA seeks a mapping to project human gait sequences collected from different people into a low-dimensional feature subspace by redefining a more standard scatter matrix between classes,such that intraclass geometrical structures are preserved and interclass distances of gait sequences are maximized simultaneously. Firstly,with the counterclockwise unwrapping,2D silhouette image are transformed into 1D normalized distance signals,and the distances of a walking person are chosen as the basic image feature. Secondly,the best projection space is got by GLDA. Finally,the recognition task is completed according to Support Vector Machine( SVM). Experimental results showthat the proposed algorithm is simple and effective and outperforms other existing approaches in terms of recognition accuracy,computational complexity and processing speed.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第7期1504-1507,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61175051 61175033 61203360)资助 国家"八六三"高技术研究发展计划项目(2012AA011005)资助 安徽省自然科学基金项目(1308085QF108)资助 合肥工业大学博士专项项目(JZ2014HGBZ0014)资助
关键词 机器视觉 步态识别 线性判别分析(LDA) 轮廓解卷绕 类间离散矩阵 computer vision gait recognition linear discriminative analysis(LDA) counterclockwise unwrapping between-class scatter
  • 相关文献

参考文献4

二级参考文献131

  • 1赵子健,吴晓娟.基于近似时空切片向量的步态识别方法研究[J].模式识别与人工智能,2005,18(5):608-614. 被引量:3
  • 2赵子健,吴晓娟,刘允才.基于角度直方图的步态识别算法[J].计算机工程与科学,2006,28(6):73-76. 被引量:6
  • 3杨军,吴晓娟,彭彰,陈文刚.基于多区域分割的步态表示与识别算法研究[J].计算机学报,2006,29(10):1876-1881. 被引量:10
  • 4彭彰,吴晓娟,杨军.基于肢体长度参数的多视角步态识别算法[J].自动化学报,2007,33(2):210-213. 被引量:10
  • 5BenAbdelkader C,Cutler R G,Davis L S.Gait Recognition Using Image Self-Similarity.EUBASIP Journal on Applied Signal ing,2004,4:572-585.
  • 6Lee L,Grimson W E L.Gait Analysis for Recognition and Classification//Proc of the 5th IEEE International Conference on Automatic Face and Gesture Recognition.Washington,USA,2002:148-155.
  • 7Wang Liang,Tan Tieniu,Hu Weiming,et al.Automatic Gait Recognition Based on Statistical Shape Analysis.IEEE Trans on Image Processing,2003,12(9):1120-1131.
  • 8Sarkar S,Phillips P J,Liu Z,et al.The HumanID Gait Challenge Problem:Data Sets,Performance,and Analysis.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(2):162-177.
  • 9Han Ju,Bhanu B.Individual Recognition Using Gait Energy Image.IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(2):316-322.
  • 10CASIA Gait Database[DB/OL].[2006-06-10].http://www.cbsr.ia.ac.on/China/index% 20.CH.asp.

共引文献236

同被引文献34

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部